Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Genomics ; 115(6): 110740, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37923179

RESUMO

The Chinese chestnut, Castanea mollissima Blume, a nut-bearing tree native to China and North Korea, belongs to the Fagaceae family. As an important genetic resource, C. mollissima is vital in enhancing edible chestnut varieties and offers significant insights into the origin and evolution of chestnut species. While the chloroplast genome of C. mollissima has been sequenced, its mitochondrial genome (mitogenome) remains largely uncharted. In this study, we have characterized the C. mollissima mitogenome, assembling it utilizing reads from both BGI and Nanopore sequencing platforms, and conducted a comparative analysis with the mitochondrial genomes of closely related species. The mitogenome of C. mollissima manifests a polycyclic structure consisting of two circular molecules measuring 363,232 bp and 24,806 bp, respectively. This genome encompasses 35 unique protein-coding genes, 19 tRNA genes, and three rRNA genes. A total of 139 SSRs were identified throughout the entire C. mollissima mitogenome. Furthermore, the combined length of homologous fragments between the chloroplast and mitochondrial genomes was 5766 bp, constituting 1.49% of the mitogenome. We also predicted 484 RNA editing sites in C. mollissima, demonstrating C-to-U RNA editing. Phylogenetic analysis of related species' mitogenomes showed that C. mollissima was closely related to Lithocarpus litseifolius (Hance) Chun and Quercus acutissima Carruth. Interestingly, the mitogenome sequences of C. mollissima, L. litseifolius, Q. acutissima, Fagus sylvatica L., and Juglans mandshurica Maxim did not show conservation in their alignments, indicating frequent genome reorganization. This report marks the inaugural study of the C. mollissima mitogenome, serving as a benchmark genome for economically significant plants within the Castanea genus. Moreover, it supplies invaluable information that can guide future molecular breeding efforts and contribute to the broader understanding of chestnut genomics.


Assuntos
Genoma Mitocondrial , Quercus , Filogenia , Genômica , China
2.
Sensors (Basel) ; 23(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005407

RESUMO

Deep learning algorithms have achieved encouraging results for pipeline defect segmentation. However, existing defect segmentation methods may encounter challenges in accurately segmenting the complex features of pipeline defects and suffer from low processing speeds. Therefore, in this study, we propose Pipe-Sparse-Net, a pipeline defect segmentation system that combines StyleGAN3 to segment the complex forms of underground drainage pipe defects. First, we introduce a data augmentation algorithm based on StyleGAN3 to enlarge the dataset. Next, we propose Pipe-Sparse-Net, a pipeline segmentation model based on SparseInst, to accurately predict the defect regions in drainage pipes. Experimental results demonstrate that the segmentation accuracy of this model can reach 91.4% with a processing speed of 56.7 frames per second (FPS). To validate the superiority of this method, comparative experiments were conducted against Yolact, Condinst, and Mask R-CNN, and the model achieved a speed improvement of 45% while increasing the accuracy by more than 4%.

3.
J Am Chem Soc ; 143(23): 8829-8837, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34096297

RESUMO

ZrZnOx is active in catalyzing carbon dioxide (CO2) hydrogenation to methanol (MeOH) via a synergy between ZnOx and ZrOx. Here we report the construction of Zn2+-O-Zr4+ sites in a metal-organic framework (MOF) to reveal insights into the structural requirement for MeOH production. The Zn2+-O-Zr4+ sites are obtained by postsynthetic treatment of Zr6(µ3-O)4(µ3-OH)4 nodes of MOF-808 by ZnEt2 and a mild thermal treatment to remove capping ligands and afford exposed metal sites for catalysis. The resultant MOF-808-Zn catalyst exhibits >99% MeOH selectivity in CO2 hydrogenation at 250 °C and a high space-time yield of up to 190.7 mgMeOH gZn-1 h-1. The catalytic activity is stable for at least 100 h. X-ray absorption spectroscopy (XAS) analyses indicate the presence of Zn2+-O-Zr4+ centers instead of ZnmOn clusters. Temperature-programmed desorption (TPD) of hydrogen and H/D exchange tests show the activation of H2 by Zn2+ centers. Open Zr4+ sites are also critical, as Zn2+ centers supported on Zr-based nodes of other MOFs without open Zr4+ sites fail to produce MeOH. TPD of CO2 reveals the importance of bicarbonate decomposition under reaction conditions in generating open Zr4+ sites for CO2 activation. The well-defined local structures of metal-oxo nodes in MOFs provide a unique opportunity to elucidate structural details of bifunctional catalytic centers.

4.
J Am Chem Soc ; 139(10): 3834-3840, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28209054

RESUMO

The interfaces of Cu/ZnO and Cu/ZrO2 play vital roles in the hydrogenation of CO2 to methanol by these composite catalysts. Surface structural reorganization and particle growth during catalysis deleteriously reduce these active interfaces, diminishing both catalytic activities and MeOH selectivities. Here we report the use of preassembled bpy and Zr6(µ3-O)4(µ3-OH)4 sites in UiO-bpy metal-organic frameworks (MOFs) to anchor ultrasmall Cu/ZnOx nanoparticles, thus preventing the agglomeration of Cu NPs and phase separation between Cu and ZnOx in MOF-cavity-confined Cu/ZnOx nanoparticles. The resultant Cu/ZnOx@MOF catalysts show very high activity with a space-time yield of up to 2.59 gMeOH kgCu-1 h-1, 100% selectivity for CO2 hydrogenation to methanol, and high stability over 100 h. These new types of strong metal-support interactions between metallic nanoparticles and organic chelates/metal-oxo clusters offer new opportunities in fine-tuning catalytic activities and selectivities of metal nanoparticles@MOFs.

5.
Chemistry ; 23(35): 8390-8394, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28485839

RESUMO

A metal-organic layer (MOL) is a new type of 2D material that is derived from metal-organic frameworks (MOFs) by reducing one dimension to a single layer or a few layers. Tetraphenylethylene-based tetracarboxylate ligands (TCBPE), with aggregation-induced emission properties, were assembled into the first luminescent MOL by linking with Zr6 O4 (OH)6 (H2 O)2 (HCO2 )6 clusters. The emissive MOL can replace the lanthanide phosphors in white light emitting diodes (WLEDs) with remarkable processability, color rendering, and brightness. Importantly, the MOL-WLED exhibited a physical switching speed three times that of commercial WLEDs, which is crucial for visible-light communication (VLC), an alternative wireless communication technology to Wi-Fi and Bluetooth, by using room lighting to carry transmitted signals. The short fluorescence lifetime (2.6 ns) together with high quantum yield (50 %) of the MOL affords fast switching of the assembled WLEDs for efficient information encoding and transmission.

6.
Front Genet ; 15: 1337578, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333622

RESUMO

The NAC gene family is one of the most important transcription factor families specific to plants, responsible for regulating many biological processes, including development, stress response, and signal transduction. However, it has not yet been characterized in chestnut, an important nut tree species. Here, we identified 115 CmNAC genes in the chestnut genome, which were divided into 16 subgroups based on the phylogenetic analysis. Numerous cis-acting elements related to auxin, gibberellin, and abscisic acid were identified in the promoter region of CmNACs, suggesting that they play an important role in the growth and development of chestnut. The results of the collinear analysis indicated that dispersed duplication and whole-genome-duplication were the main drivers of CmNAC gene expansion. RNA-seq data of developmental stages of chestnut nut, bud, and ovule revealed the expression patterns of CmNAC genes. Additionally, qRT-PCR experiments were used to verify the expression levels of some CmNAC genes. The comprehensive analysis of the above results revealed that some CmNAC members may be related to chestnut bud and nut development, as well as ovule fertility. The systematic analysis of this study will help to increase understanding of the potential functions of the CmNAC genes in chestnut growth and development.

7.
Sci Rep ; 14(1): 14511, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914646

RESUMO

Flavonoids are crucial secondary metabolites that possess the ability to mitigate UV damage and withstand both biotic and abiotic stresses. Therefore, it is of immense significance to investigate the flavonoid content as a pivotal indicator for a comprehensive assessment of chestnut's drought tolerance. This study aimed to determine the flavonoid content and drought tolerance-related physiological and biochemical indices of six chestnut varieties (clones) grafted trees-Qianxi 42 (QX42), Qinglong 45 (QL45), Yanshanzaofeng (YSZF), Yanzi (YZ), Yanqiu (YQ), and Yanlong (YL)-under natural drought stress. The results were used to comprehensively analyze the drought tolerance ability of these varieties. The study revealed that the ranking of drought tolerance indices in terms of their ability to reflect drought tolerance was as follows: superoxide (oxide) dismutase (SOD) activity, ascorbate peroxidase (APX) activity, flavone content, catalase (CAT) activity, proline (PRO) content, soluble sugar content, peroxidase (POD) activity, betaine content, flavonol content, hydrogen peroxide (H2O2) content, soluble protein content, superoxide ion (OFR) content, superoxide (ion OFR) production rate, malondialdehyde (MDA) content, chlorophyll content. Through principal component analysis, the contents of flavonoids and flavonols can be used as indicators for comprehensive evaluation of drought tolerance of chestnut. The comprehensive evaluation order of drought tolerance of grafted trees of 6 chestnut varieties (Clones) was: QL45 > QX42 > YQ > YZ > YSZF > YL.


Assuntos
Secas , Flavonoides , Flavonoides/metabolismo , Estresse Fisiológico , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Prolina/metabolismo , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Fagaceae/fisiologia , Fagaceae/genética , Adaptação Fisiológica , Catalase/metabolismo , Ascorbato Peroxidases/metabolismo , Resistência à Seca , População do Leste Asiático
8.
Foods ; 12(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37685244

RESUMO

The microbial contamination of food poses a threat to human health. Chestnut shells, which are byproducts of chestnut processing, contain polyphenols that exert various physiological effects, and thus have the potential to be used in food preservation. This study investigates the bacteriostatic effect and mechanism(s) of the action of chestnut shell polyphenols (CSPs) on three food-spoilage bacteria, namely Bacillus subtilis, Pseudomonas fragi, and Escherichia coli. To this end, the effect of CSPs on the ultrastructure of each bacterium was determined using scanning electron microscopy and transmission electron microscopy. Moreover, gene expression was analyzed using RT-qPCR. Subsequent molecular docking analysis was employed to elucidate the mechanism of action employed by CSPs via the inhibition of key enzymes. Ultrastructure analysis showed that CSPs damaged the bacterial cell wall and increased permeability. At 0.313 mg/mL, CSPs significantly increased the activity of alkaline phosphatase and lactate dehydrogenase, as well as protein leakage (p < 0.05), whereas the activity of the tricarboxylic acid (TCA) cycle enzymes, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, were inhibited (p < 0.05). The expression levels of the TCA-related genes gltA, icd, sucA, atpA, citA, odhA, IS178_RS16090, and IS178_RS16290 are also significantly downregulated by CSP treatment (p < 0.05). Moreover, CSPs inhibit respiration and energy metabolism, including ATPase activity and adenosine triphosphate (ATP) synthesis (p < 0.05). Molecular docking determined that proanthocyanidins B1 and C1, the main components of CSPs, are responsible for the antibacterial activity. Therefore, as natural antibacterial substances, CSPs have considerable potential for development and application as natural food preservatives.

9.
Front Plant Sci ; 14: 1206585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404530

RESUMO

Chinese chestnut (Castanea mollissima) is an important nut tree species, and its embryo is rich in sugar. We combined metabolomic and transcriptomic data to analyze metabolites and genes related to sugar in two Chinese chestnut cultivars at 60, 70, 80, 90 and 100 days after flowering (DAF). The soluble sugar content of high-sugar cultivar at maturity is 1.5 times that of low-sugar cultivar. Thirty sugar metabolites were identified in embryo, with the most dominant being sucrose. Analysis of the gene expression patterns revealed that the high-sugar cultivar promoted the conversion of starch to sucrose by up-regulating genes related to starch degradation and sucrose synthesis at 90-100 DAF. It also strongly increased the enzyme activity of SUS-synthetic, which may promote sucrose synthesis. Gene co-expression network analysis showed that ABA and peroxide were related to starch decomposition during Chinese chestnut ripening. Our study analyzed the composition and molecular synthesis mechanism of sugar in Chinese chestnut embryos, and provided a new insight into the regulation pattern of high sugar accumulation in Chinese chestnut nuts.

10.
Front Genet ; 14: 1193953, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252667

RESUMO

The basic helix-loop-helix (bHLH) transcription factors (TFs) gene family is an important gene family in plants, and participates in regulation of plant apical meristem growth, metabolic regulation and stress resistance. However, its characteristics and potential functions have not been studied in chestnut (Castanea mollissima), an important nut with high ecological and economic value. In the present study, 94 CmbHLHs were identified in chestnut genome, of which 88 were unevenly distributed on chromosomes, and other six were located on five unanchored scaffolds. Almost all CmbHLH proteins were predicted in the nucleus, and subcellular localization demonstrated the correctness of the above predictions. Based on the phylogenetic analysis, all of the CmbHLH genes were divided into 19 subgroups with distinct features. Abundant cis-acting regulatory elements related to endosperm expression, meristem expression, and responses to gibberellin (GA) and auxin were identified in the upstream sequences of CmbHLH genes. This indicates that these genes may have potential functions in the morphogenesis of chestnut. Comparative genome analysis showed that dispersed duplication was the main driving force for the expansion of the CmbHLH gene family inferred to have evolved through purifying selection. Transcriptome analysis and qRT-PCR experiments showed that the expression patterns of CmbHLHs were different in different chestnut tissues, and revealed some members may have potential functions in chestnut buds, nuts, fertile/abortive ovules development. The results from this study will be helpful to understand the characteristics and potential functions of the bHLH gene family in chestnut.

11.
Chem Commun (Camb) ; 59(38): 5737-5740, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37092587

RESUMO

Metal NP @ metal-organic frameworks (MOFs) are widely used in electrocatalysis. However, many of the MOFs are poorly conductive. Here, we loaded bismuth (Bi) into a Zr-based MOF of the UiO structure that is active for CO2 reduction to formate and found that a moderate conductivity of the nanosized MOFs is sufficient to support a reasonably high catalytic current density. This finding allows simpler catalyst design and quantitative rationalization of MOF electrocatalysis.

12.
Front Plant Sci ; 14: 1166717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077628

RESUMO

The transcription factors of basic leucine zipper (bZIP) family genes play significant roles in stress response as well as growth and development in plants. However, little is known about the bZIP gene family in Chinese chestnut (Castanea mollissima Blume). To better understand the characteristics of bZIPs in chestnut and their function in starch accumulation, a series of analyses were performed including phylogenetic, synteny, co-expression and yeast one-hybrid analyses. Totally, we identified 59 bZIP genes that were unevenly distributed in the chestnut genome and named them CmbZIP01 to CmbZIP59. These CmbZIPs were clustered into 13 clades with clade-specific motifs and structures. A synteny analysis revealed that segmental duplication was the major driving force of expansion of the CmbZIP gene family. A total of 41 CmbZIP genes had syntenic relationships with four other species. The results from the co-expression analyses indicated that seven CmbZIPs in three key modules may be important in regulating starch accumulation in chestnut seeds. Yeast one-hybrid assays showed that transcription factors CmbZIP13 and CmbZIP35 might participate in starch accumulation in the chestnut seed by binding to the promoters of CmISA2 and CmSBE1_2, respectively. Our study provided basic information on CmbZIP genes, which can be utilized in future functional analysis and breeding studies.

13.
J Ethnopharmacol ; 303: 115999, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509260

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic hepatopathy worldwide, in which ectopic steatosis (5%) and inflammatory infiltration in the liver are the principal clinical characteristics. Huangqin decoction (HQD), a Chinese medicine formula used in the clinic for thousands of years, presents appreciable anti-inflammatory effects. Nevertheless, the role and mechanism of HQD against inflammation in NAFLD are still undefined. AIM OF THE STUDY: The objective of this study was to evaluate the curative efficacy and unravel the involved mechanism of HQD on a high-fat diet (HFD)-induced NAFLD. MATERIALS AND METHODS: First, HPLC was utilized to analyze the main chemical components of HQD. Then, NAFLD model was introduced by subjecting the rats to HFD for 16 weeks, and HQD (400 and 800 mg/kg) or polyene lecithin choline (PLC, 8 mg/kg) was given orally from week 8-16. Pharmacodynamic indicators including body weight, liver weight, liver index, as well as biochemical and histological parameters were assessed. As to mechanism exploration, the expressions of TLR4/NF-κB/NLRP3 pathway and molecular docking between major phytochemicals of HQD and key targets of TLR4/NF-κB/NLRP3 pathway were investigated. RESULTS: Seven main monomeric constituents of HQD were revealed by HPLC analysis. Of note, HQD could effectively attenuate the body weight, liver weight, and liver index, rescue disorders in serum transaminases and lipid profile, correct hepatic histological abnormalities, and reduce phagocytes infiltration into the liver and pro-inflammatory cytokines release in NAFLD rats. Mechanism investigation discovered that HQD harbored inhibitory effects on TLR4/NF-κB/NLRP3 pathway-regulated liver inflammation. Further exploration found that seven phytochemicals in HQD exhibited better binding modes with TLR4/NF-κB/NLRP3 pathway, in which baicalein, baicalin and liquiritin presented the highest affinity and docking score for protein TLR4, NF-κB, and NLRP3, respectively. CONCLUSIONS: These findings confirmed that HQD ameliorated hepatic inflammation in NAFLD rats by blocking the TLR4/NF-κB/NLRP3 pathway, with multi-components and multi-targets action pattern.


Assuntos
NF-kappa B , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Scutellaria baicalensis , Receptor 4 Toll-Like/metabolismo , Dieta Hiperlipídica/efeitos adversos , Simulação de Acoplamento Molecular , Fígado , Inflamação/patologia , Peso Corporal
14.
World J Gastroenterol ; 29(31): 4744-4762, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37664157

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological entity characterized by intrahepatic ectopic steatosis. As a consequence of increased consumption of high-calorie diet and adoption of a sedentary lifestyle, the incidence of NAFLD has surpassed that of viral hepatitis, making it the most common cause of chronic liver disease globally. Huangqin decoction (HQD), a Chinese medicinal formulation that has been used clinically for thousands of years, has beneficial outcomes in patients with liver diseases, including NAFLD. However, the role and mechanism of action of HQD in lipid metabolism disorders and insulin resistance in NAFLD remain poorly understood. AIM: To evaluate the ameliorative effects of HQD in NAFLD, with a focus on lipid metabolism and insulin resistance, and to elucidate the underlying mechanism of action. METHODS: High-fat diet-induced NAFLD rats and palmitic acid (PA)-stimulated HepG2 cells were used to investigate the effects of HQD and identify its potential mechanism of action. Phytochemicals in HQD were analyzed by high-performance liquid chromatography (HPLC) to identify the key components. RESULTS: Ten primary chemical components of HQD were identified by HPLC analysis. In vivo, HQD effectively prevented rats from gaining body and liver weight, improved the liver index, ameliorated hepatic histological aberrations, decreased transaminase and lipid profile disorders, and reduced the levels of pro-inflammatory factors and insulin resistance. In vitro studies revealed that HQD effectively alleviated PA-induced lipid accumulation, inflammation, and insulin resistance in HepG2 cells. In-depth investigation revealed that HQD triggers Sirt1/NF-κB pathway-modulated lipogenesis and inflammation, contributing to its beneficial actions, which was further corroborated by the addition of the Sirt1 antagonist EX-527 that compromised the favorable effects of HQD. CONCLUSION: In summary, our study confirmed that HQD mitigates lipid metabolism disorders and insulin resistance in NAFLD by triggering the Sirt1/NF-κB pathway.


Assuntos
Resistência à Insulina , Transtornos do Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica , Animais , Ratos , NF-kappa B , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Scutellaria baicalensis , Metabolismo dos Lipídeos , Sirtuína 1 , Inflamação , Lipídeos
15.
Mitochondrial DNA B Resour ; 7(9): 1696-1698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188665

RESUMO

Tripterygium wilfordii is a perennial vine plant with medicinal value and belongs to the family of Celastraceae. In this study, we sequenced and analyzed the complete chloroplast genome of T. wilfordii. The chloroplast genome was 156,700 bp in length with a GC content of 37.47%. It contained two inverted repeat (IR) regions of 26,461 bp; each region was separated by large single-copy and small single-copy regions of 85,409 bp and 18,369 bp, respectively. In total, we annotated 134 unique genes, consisting of 89 protein-encoding genes, 8 rRNAs and 37 tRNAs. Phylogenetic analysis revealed that T. wilfordii was sister to T. regelii in a clade of Tripterygiumii species that was sister to a clade of Euonymus species.

16.
J Mol Model ; 28(6): 150, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35562620

RESUMO

Owing to the negative impacts of abusing illegal drugs like methamphetamine (MAF), their detection and control are of paramount importance. Therefore, it is very critical to determine MAF in biological samples. The current research study investigated the sensing interaction of inherent and MgO nanotubes (MgONT) toward MAF via density functional theory computations. We determined that the MgONT has a sensing response of 283.31, and it remarkably improves the reactivity toward MAF. The levels of energy for the highest occupied and the lowest unoccupied molecular orbitals have changed to a great extent, thereby reducing bandgap (Eg) values which increased electrical conductivity. Furthermore, a short recovery time (~ 28.65 ms) has been anticipated for MAF desorption from the MgONT exterior. This piece of research showed that MgONT might be a possible electronic sensor and an appropriate choice to deliver MAF in biological samples.


Assuntos
Metanfetamina , Nanotubos , Condutividade Elétrica , Óxido de Magnésio , Modelos Moleculares
17.
Front Genet ; 13: 1080759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685835

RESUMO

GRAS transcription factors play an important role in regulating various biological processes in plant growth and development. However, their characterization and potential function are still vague in Chinese chestnut (Castanea mollissima), an important nut with rich nutrition and high economic value. In this study, 48 CmGRAS genes were identified in Chinese chestnut genome and phylogenetic analysis divided CmGRAS genes into nine subfamilies, and each of them has distinct conserved structure domain and features. Genomic organization revealed that CmGRAS tend to have a representative GRAS domain and fewer introns. Tandem duplication had the greatest contribution for the CmGRAS expansion based on the comparative genome analysis, and CmGRAS genes experienced strong purifying selection pressure based on the Ka/Ks. Gene expression analysis revealed some CmGRAS members with potential functions in bud development and ovule fertility. CmGRAS genes with more homologous relationships with reference species had more cis-acting elements and higher expression levels. Notably, the lack of DELLA domain in members of the DELLA subfamily may cause de functionalization, and the differences between the three-dimensional structures of them were exhibited. This comprehensive study provides theoretical and practical basis for future research on the evolution and function of GRAS gene family.

18.
ACS Appl Mater Interfaces ; 12(15): 17436-17442, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32195562

RESUMO

We report the preparation of porous hydrous zirconia by treatment of zirconium-based metal-organic framework (MOF) UiO-66 with a strong base. Microporosity of the original MOF was partially retained in the resultant porous hydrous zirconia. NiII centers were then adsorbed onto the OH-rich hydrous zirconia and in situ converted to highly dispersed Ni0 for CO2 hydrogenation to CH4. The activated catalyst after an induction period showed a turnover frequency of 345 h-1 or a space-time yield of 5851 mmol·gNi-1·h-1 with a CH4 selectivity of over 99%. The catalyst was tested for 100 h on stream, showing only a 4% decrease in activity, and was found to convert atmospheric CO2 to CH4 via CO2 collection through Na2CO3/NaHCO3 cycling. Thermal decomposition of NaHCO3 released CO2 for hydrogenation to CH4, and the resultant Na2CO3 absorbed CO2 from air to form NaHCO3. This work highlights the opportunity in using MOFs as precursors to prepare highly porous metal oxide/hydroxide supports for solid-gas phase catalysis.

19.
Food Res Int ; 127: 108704, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31882093

RESUMO

Effects of drinking amount and patterns of wine on the digestive characteristics and bioaccessibility of wine polyphenols under in vitro gastrointestinal digestion were investigated. Wine polyphenols released well during mouth and stomach digestion, and the release rates in the "serum-available" fraction, "colon-available" fraction, and after the colon were much lower. Red wine showed a higher biological activity than white wine, but white wine had a better bioaccessibility than red wine, especially under binge drinking. The bioaccessibility of most polyphenols decreased as the drinking amount increased, indicating that drinking larger volumes of wine did not increase the bioaccessibility of polyphenols. Additionally, the relevant biological activities did not increase as the drinking amount increased. Drinking after a meal showed significantly better results than drinking before a meal in most of the tests. Hence, in order to let wine polyphenols play its functional for human health, there still need a moderate consumption amount of wine and drinking after meal is better.


Assuntos
Antioxidantes/metabolismo , Comportamento de Ingestão de Líquido , Polifenóis/metabolismo , Vinho , Animais , Comportamento Animal , Colo/metabolismo , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley
20.
Mitochondrial DNA B Resour ; 5(1): 360-361, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33366556

RESUMO

Saposhnikovia divaricata (Trucz.) Schischk. is a traditional Chinese herbal medicine widely distributed in Eastern Siberia and Northern Asia. In this research, we assembled and characterized the complete chloroplast genome sequence of S. divaricata from high-throughput sequencing data. The chloroplast genome was 147,834 bp in length, consisting of large single-copy (LSC) and small single-copy (SSC) regions of 93,202 bp and 17,324 bp, respectively, which were separated by a pair of 18,654 bp inverted repeat (IR) regions. The genome is expected to contain 129 genes, including 85 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. The total GC content of the genome is 37.5%. A phylogenetic tree reconstructed by 40 chloroplast genomes reveals that S. divaricata is mostly related to Ledebouriella seseloides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA