Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(7)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976546

RESUMO

In this study, we conducted molecular dynamic simulations to investigate the thermal expansion behavior of Janus MoSSe nanotubes. We focused on understanding how the intrinsic strain in these nanotubes affects their thermal expansion coefficient (TEC). Interestingly, we found that Janus MoSSe nanotubes with sulfur (S) on the outer surface (MoSeS) exhibit a different intrinsic strain compared to those with selenium (Se) on the outer surface (MoSSe). In light of this observation, we explored the influence of this intrinsic strain on the TEC of the nanotubes. Our results revealed distinct trends for the TEC along the radial direction (TEC-r) and the axial direction (TEC-lx) of the MoSSe and MoSeS nanotubes. The TEC-rof MoSeS nanotubes was found to be significantly greater than that of MoSSe nanotubes. Moreover, the TEC-lxof MoSeS nanotubes was smaller than that of MoSSe nanotubes. Further analysis showed that the TEC-rof MoSeS nanotubes decreased by up to 37% as the radius increased, while that of MoSSe nanotubes exhibited a slight increase with increasing radius. On the other hand, the TEC-lxof MoSeS nanotubes increased by as much as 45% with increasing radius, whereas that of MoSSe nanotubes decreased gradually. These opposite tendencies of the TECs with respect to the radius were attributed to the presence of intrinsic strain within the nanotubes. The intrinsic strain was found to play a crucial role in inducing thermally induced bending and elliptization of the nanotubes' cross-section. These effects are considered key mechanisms through which intrinsic strain influences the TEC. Overall, our study provides valuable insights into the thermal stability of Janus nanotubes. By understanding the relationship between intrinsic strain and the thermal expansion behavior of nanotubes, we contribute to the broader understanding of these materials and their potential applications.

2.
Nanotechnology ; 32(48)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34412042

RESUMO

Van der Waals heterostructures inherit many novel electronic and optical properties from their constituent atomic layers. Mechanical stability is key for realizing high-performance nanodevices based on van der Waals heterostructures. However, buckling instability is a critical mechanical issue for heterostructures associated with its two-dimensional nature. Using molecular dynamics simulations of graphene/MoS2heterostructures, we demonstrate the relationship between buckling instability and the misfit strain that arises inevitably in such heterostructures. The impact of misfit strain on buckling depends on its magnitude: (1) A negative misfit strain causes a pre-compression of the graphene layer, which in turn initiates and accelerates buckling in this layer and reduces the buckling stability in the heterostructure as a whole. (2) A small positive misfit strain enhances the buckling stability of the graphene/MoS2heterostructure by pre-stretching and hence decelerating the buckling of the graphene layer (where heterostructure buckling is initiated). (3) In the case of a large positive misfit strain, the graphene layer is pre-stretched while the MoS2layer is significantly pre-compressed, so that heterostructure buckling is initiated by the MoS2layer. Consequently, the buckling stability of the graphene/MoS2heterostructure is reduced by increasing the large positive misfit strain. These findings are valuable for understanding the mechanical properties of van der Waals heterostructures.

3.
Phys Chem Chem Phys ; 24(1): 156-162, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34877582

RESUMO

Because of their advanced properties inherited from their constituent atomic layers, van der Waals heterostructures such as graphene/MoS2 are promising candidates for many optical and electronic applications. However, because heat tends to be generated during the operation of nanodevices, thermal expansion is an important phenomenon to consider for the thermal stability of such heterostructures. In the present work, molecular dynamics simulations are used to investigate the thermal expansion coefficient of the graphene/MoS2 heterostructure, and how the unavoidable misfit strain affects that coefficient is revealed. The misfit strain can tune the thermal expansion coefficient by a factor of six, and this effect is quite robust in the sense that it is insensitive to the size or direction of the heterostructure. Further analysis shows that the misfit strain offers an efficient means of engineering thermally induced ripples, this being the key mechanism for how the misfit strain affects the thermal expansion coefficient. These findings provide valuable information about the thermal stability of van der Waals heterostructures and offer help for practical applications of nanodevices based on such heterostructures.

4.
Nanotechnology ; 31(40): 405709, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32521524

RESUMO

The thermal expansion effect plays an important role in governing the thermal stability or the stable configuration of quasi-two-dimensional atomic layers, where the difference between the thermal expansion coefficient of different kinds of atomic layer in lateral heterostructure may cause strong thermal rippling of the atomic layer. We investigate the thermal expansion phenomenon in the WSe2-MoS2 lateral heterostructure. We find that the thermal expansion coefficient can be enhanced by more than a factor of two via varying the ratio between the WSe2 and MoS2 components in the heterostructure. The underlying mechanism is disclosed to be the buckling of the WSe2 region that is induced by the misfit strain at the coherent interface between WSe2 and MoS2. These findings shall be helpful in handling the thermal stability of functional devices based on the transition-metal dichalcogenide lateral heterostructures and other similar quasi-two-dimensional lateral heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA