Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 339: 139604, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482317

RESUMO

Black phosphorus nanosheets/nanoparticles (BPNs) are widely applied in many fields. However, the transport of BPNs in the subsurface still has not yet been reported and there is increasing concern about potential adverse impacts on ecosystems. Roles of median grain size and surface roughness, BPN concentration, and solution chemistries (pH, ionic strength, and cation types) on the retention and release of BPNs in column experiments were therefore investigated. The mobility of BPNs significantly increased with increasing grain size and decreasing surface roughness due to their influence on the mass transfer rate, number of deposition sites and retention capacity, and straining processes. Transport of BPNs was enhanced with an increase in pH and a decrease in ionic strength because of surface deprotonation and stronger repulsion that tends to reduce aggregation. The BPN transport was significantly sensitive to ionic strength, compared with other engineered nanoparticles. Additionally, charge heterogeneity and cation-bridging played a critical role in the retention of BPNs in the presence of divalent cations. Higher input concentrations increased the retention of BPNs, probably because collisions, aggregation at pore throat locations, and hydrodynamic bridging were more pronounced. Small fractions of BPNs can be released under decreasing IS and increasing pH due to the expansion of the electrical double layer and increased repulsion at convex roughness locations. A mathematical model that includes provisions for advective dispersive transport and time-dependent retention with blocking or ripening terms well described the retention and release of BPNs. These findings provide fundamental information that helps to understand the transport of BPNs in the subsurface environments.


Assuntos
Nanopartículas , Fósforo , Porosidade , Ecossistema , Concentração Osmolar , Cátions
2.
Environ Pollut ; 315: 120297, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36181937

RESUMO

Nonylphenol (Noph) has garnered worldwide concern as a typical endocrine disruptor due to its toxicity, estrogenic properties, and widespread contamination. To better elucidate the interaction of Noph with ubiquitously existing microplastics (MPs) and the potential interdependence of their transport behaviors, batch adsorption and column experiments were conducted, paired with mathematical modeling. Compared with sand, MPs and soil colloids show stronger adsorption affinity for Noph due to the formation of hydrogen bonding and the larger numbers of interaction sites that are available on solid surfaces. Limited amount of soil-colloid coating on sand grains significantly influenced transport behaviors and the sensitivity to solution chemistry. These coatings led to a monotonic increase in Noph retention and a nonmonotonic MPs retention in single systems because of the altered physicochemical properties. The mobility of both MPs and Noph was enhanced when they coexisted, resulting from their association, increased electrostatic repulsion, and competition on retention sites. Limited release of MPs and Noph (under reduced ionic strength (IS) and increased pH) indicated strong interactions in irreversible retention. The retention and release of Noph were independent of IS and solution pH. A one-site model with a blocking term and a two-site kinetic model well described the transport of MPs and Noph, respectively. Our findings highlight the essential roles of coexisting MPs and Noph on their transport behaviors, depending on their concentrations, IS, and physicochemical properties of the porous media. The new knowledge from this study refreshes our understanding of the co-transport of MPs and organic contaminants such as Noph in the subsurface.


Assuntos
Microplásticos , Plásticos , Porosidade , Areia , Adsorção , Coloides/química , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA