Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0058824, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136490

RESUMO

Many bacteria co-exist and produce antibiotics, yet we know little about how they cope and occupy the same niche. The purpose of the present study was to determine if and how two potent antibiotic-producing marine bacteria influence the secondary metabolome of each other. We established an agar- and broth-based system allowing co-existence of a Phaeobacter species and Pseudoalteromonas piscicida that, respectively, produce tropodithietic acid (TDA) and bromoalterochromides (BACs). Co-culturing of Phaeobacter sp. strain A36a-5a on Marine Agar with P. piscicida strain B39bio caused a reduction of TDA production in the Phaeobacter colony. We constructed a transcriptional gene reporter fusion in the tdaC gene in the TDA biosynthetic pathway in Phaeobacter and demonstrated that the reduction of TDA by P. piscicida was due to the suppression of the TDA biosynthesis. A stable liquid co-cultivation system was developed, and the expression of tdaC in Phaeobacter was reduced eightfold lower (per cell) in the co-culture compared to the monoculture. Mass spectrometry imaging of co-cultured colonies revealed a reduction of TDA and indicated that BACs diffused into the Phaeobacter colony. BACs were purified from Pseudoalteromonas; however, when added as pure compounds or a mixture they did not influence TDA production. In co-culture, the metabolome was dominated by Pseudoalteromonas features indicating that production of other Phaeobacter compounds besides TDA was reduced. In conclusion, co-existence of two antibiotic-producing bacteria may be allowed by one causing reduction in the antagonistic potential of the other. The reduction (here of TDA) was not caused by degradation but by a yet uncharacterized mechanism allowing Pseudoalteromonas to reduce expression of the TDA biosynthetic pathway.IMPORTANCEThe drug potential of antimicrobial secondary metabolites has been the main driver of research into these compounds. However, in recent years, their natural role in microbial systems and microbiomes has become important to determine the assembly and development of microbiomes. Herein, we demonstrate that two potent antibiotic-producing bacteria can co-exist, and one mechanism allowing the co-existence is the specific reduction of antibiotic production in one bacterium by the other. Understanding the molecular mechanisms in complex interactions provides insights for applied uses, such as when developing TDA-producing bacteria for use as biocontrol in aquaculture.

2.
PLoS One ; 19(1): e0296705, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38261583

RESUMO

International trade has a significant impact on global environmental quality and sustainable economic development. Global value chains (GVCs) have become a crucial component of international trade and development policy. The global production structure has become more complicated with the inclusion of domestic markets in GVC, putting significant pressure on world energy resources and environmental sustainability. Therefore, traditional trade measures no longer accurately reflect how global trade affects the energy security of developing and developed countries. Thus, this study is the first to use a panel-corrected standard error method to look at the relationship between GVC participation and energy security by using a global sample of 35 developed and 27 developing nations from 1995 to 2018. A feasible generalized least squares model was also applied to confirm the robustness of the model. Six indicators-foreign direct investment, industrialization level, capital formation, human capital index, political stability, and GVC-were used in this research to look at their impact on the four fundamental pillars of energy security (availability, applicability, sustainability, and affordability) for sustainable economic development. For developed countries, it was confirmed that there is a non-linear relationship between GVC participation and energy intensity, renewable energy consumption, and non-fossil fuel use. In the case of developing countries, the non-linear relationship in terms of all aspects of energy security was also confirmed. The findings also indicated that GVC's involvement benefits all four dimensions of energy security in both developing and developed countries once it reaches a certain threshold. Our findings further support the impacts of long-term cointegration between GVC and energy security for sustainable economic development. Therefore, the nations must promote technology transfer and capacity building within GVCs for inclusive energy security. Similarly, they may foster sustainable practices through collaborative governance for a stable global energy network by acknowledging the positive impact of income levels on energy security.


Assuntos
Comércio , Internacionalidade , Humanos , Países Desenvolvidos , Junções Comunicantes , Desenvolvimento Econômico
3.
Sci Rep ; 14(1): 9169, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649432

RESUMO

High-quality development plays a crucial role in China's economic progress in the new era. It represents a new concept of advancement and mirrors the increasing aspirations of the populace for an improved standard of living. In this context, the role of artificial intelligence (AI) in promoting sustainable development cannot be overemphasized. This paper explores how AI technologies can drive the transition to a green, low-carbon and circular economy. We have established an index system to measure the development level of the artificial intelligence industry and the high-quality development of the economy, which is relevant to the current state of the artificial intelligence industry and the advancement of the economy. Panel data from 2008 to 2017 has been utilized for this purpose. Global principal component analysis method and entropy value method are employed in the evaluation. Through in-depth analysis of the application of artificial intelligence and environmental protection in various provinces and cities, we clarify that artificial intelligence promotes innovation, saves resources, and is conducive to the development of green economy in the new era.

4.
Sci Bull (Beijing) ; 69(8): 1153-1160, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38433030

RESUMO

Although climate change has convincingly been linked to the evolution of human civilization on different temporal scales, its role in influencing the spatial patterns of ancient civilizations has rarely been investigated. The northward shift of the ancient Silk Road (SR) route from the Tarim Basin (TB) to the Junggar Basin during ∼420-850 CE provides the opportunity to investigate the relationship between climate change and the spatial evolution of human societies. Here, we use a new high-resolution chironomid-based temperature reconstruction from arid China, combined with hydroclimatic and historical datasets, to assess the possible effects of climate fluctuations on the shift of the ancient SR route. We found that a cooling/drying climate in the TB triggered the SR route shift during ∼420-600 CE. However, a warming/wetting climate during ∼600-850 CE did not inhibit this shift, but instead promoted it, because of the favorable climate-induced geopolitical conflicts between the Tubo Kingdom and the Tang Dynasty in the TB. Our findings reveal two distinct ways in which climate change drove the spatial evolution of human civilization, and they demonstrate the flexibility of societal responses to climate change.


Assuntos
Mudança Climática , Humanos , China , Temperatura Baixa , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA