Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phytother Res ; 37(1): 35-49, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36059198

RESUMO

Myocardial infarction (MI) is the leading cause of death worldwide, and oxidative stress is part of the process that causes MI. Calycosin, a naturally occurring substance with cardioprotective properties, is one of the major active constituents in Radix Astragali. In this study, effect of Calycosin was investigated in vivo and in vitro to determine whether it could alleviate oxidative stress and oxidative stress-induced cardiac apoptosis in neonatal cardiomyocytes (NCMs) via activation of aldehyde dehydrogenase 2 (ALDH2). Calycosin protected against oxidative stress and oxidative stress-induced apoptosis in NCMs. Molecular docking revealed that the ALDH2-Calycosin complex had a binding energy of -9.885 kcal/mol. In addition, molecular docking simulations demonstrated that the ALDH2-Calycosin complex was stable. Using BLI assays, we confirmed that Calycosin could interact with ALDH2 (KD  = 1.9 × 10-4 M). Furthermore, an ALDH2 kinase activity test revealed that Calycosin increased ALDH2 activity, exhibiting an EC50 of 91.79 µM. Pre-incubation with ALDH2 inhibitor (CVT-10216 or disulfiram) reduced the cardio-protective properties Calycosin. In mice with MI, Calycosin therapy substantially reduced myocardial apoptosis, oxidative stress, and activated ALDH2. Collectively, our findings clearly suggest that Calycosin reduces oxidative stress and oxidative stress-induced apoptosis via the regulation of ALDH2 signaling, which supports potential therapeutic use in MI.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Camundongos , Animais , Aldeído-Desidrogenase Mitocondrial/metabolismo , Simulação de Acoplamento Molecular , Estresse Oxidativo , Apoptose , Aldeído Desidrogenase/metabolismo
2.
Phytother Res ; 35(7): 3836-3847, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33792976

RESUMO

Melanoma is the most common type of skin cancer. Signal transducer and activator of transcription 3 (STAT3) signaling has been demonstrated to be a therapeutic target for melanoma. Dauricine (Dau), an alkaloid compound isolated from the root of Menispermum dauricum DC., has shown tumor-suppressing effects in multiple human cancers, but its potential in melanoma remains unexplored. In this study, we demonstrated that Dau significantly inhibited the viability and proliferation of A375 and A2058 melanoma cells. Death of melanoma cells was also markedly promoted by Dau. Moreover, Dau inhibited phosphorylation-mediated activation of STAT3 and Src in a dose-dependent manner. Notably, constitutive activation of Src partially abolished the antiproliferative and cytotoxic activities of Dau on melanoma cells. Molecular docking showed that Dau could dock on the kinase domain of Src with a binding energy of -10.42 kcal/mol. Molecular dynamics simulations showed that Src-Dau binding was stable. Surface plasmon resonance imaging analysis also showed that Dau has a strong binding affinity to Src. In addition, Dau suppressed the growth of melanoma cells and downregulated the activation of Src/STAT3 in a xenograft model in vivo. These data demonstrated that Dau inhibits proliferation and promotes cell death in melanoma cells by inhibiting the Src/STAT3 pathways.


Assuntos
Benzilisoquinolinas/farmacologia , Melanoma , Proteínas Proto-Oncogênicas pp60(c-src) , Fator de Transcrição STAT3 , Tetra-Hidroisoquinolinas/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Melanoma/tratamento farmacológico , Simulação de Acoplamento Molecular , Fosforilação , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Biochem Biophys Res Commun ; 475(4): 329-34, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27216460

RESUMO

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and GATA Binding Protein 4 (GATA4) are important for the growth of cardiac fibroblasts (CFs). When deregulated, LOX-1 and GATA4 can cause cardiac remodeling. In the present study, we found novel evidence that GATA4 was required for the LOX-1 regulation of CF proliferation. The inhibition of LOX-1 by RNA interference LOX-1 lentivirus resulted in the loss of PI3K/Akt activation and GATA4 protein expression. The overexpression of LOX-1 by lentivirus rescued CF proliferation, PI3K/Akt activation, and GATA4 protein expression. Moreover, GATA4 overexpression enhanced CF proliferation with LOX-1 inhibition. We also found that the inhibition of PI3K/Akt activation by LY294002, a PI3K inhibitor, reduced cell proliferation and protein level of GATA4. In summary, GATA4 may play an important role in the LOX-1 and PI3K/Akt regulation of CF proliferation.


Assuntos
Proliferação de Células , Fibroblastos/citologia , Fator de Transcrição GATA4/metabolismo , Miocárdio/citologia , Receptores Depuradores Classe E/metabolismo , Animais , Células Cultivadas , Fibroblastos/metabolismo , Miocárdio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
4.
Phytomedicine ; 129: 155597, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643713

RESUMO

BACKGROUND: Sepsis-induced cardiac dysfunction (SICD) is a serious complication of sepsis that is associated with increased mortality. Ferroptosis has been reported in the SICD. TaoHe ChengQi decoction (THCQD), a classical traditional Chinese medicinal formula, has multiple beneficial pharmacological effects. The potential effects of THCQD on the SICD remain unknown. PURPOSE: To investigate the effect of THCQD on SICD and explore whether this effect is related to the regulation of myocardial ferroptosis through nuclear factor erythroid 2-related factor 2 (Nrf2) activation. METHODS: We induced sepsis in a mouse model using cecal ligation and puncture (CLP) and administered THCQD (2 and 4 g/kg) and dexamethasone (40 mg/kg). Mice mortality was recorded and survival curves were plotted. Echocardiography, hematoxylin and eosin staining, and analysis of serum myocardial injury markers and inflammatory factors were used to evaluate cardiac pathology. Myocardial ferroptosis was detected by quantifying specific biomarker content and protein levels. Through HPLC-Q-Exactive-MS analysis, we identified the components of the THCQD. Network pharmacology analysis and Cellular Thermal Shift Assay (CETSA) were utilized to predict the targets of THCQD for treating SICD. We detected the expression of Nrf2 using Western blotting or immunofluorescence. An RSL3-induced ferroptosis model was established using neonatal rat cardiomyocytes (NRCMs) to further explore the pharmacological mechanism of THCQD. In addition to measuring cell viability, we observed changes in NRCM mitochondria using electron microscopy and JC-1 staining. NRF2 inhibitor ML385 and Nrf2 knockout mice were used to validate whether THCQD exerted protective effects against SICD through Nrf2-mediated ferroptosis signaling. RESULTS: THCQD reduced mortality in septic mice, protected against CLP-induced myocardial injury, decreased systemic inflammatory response, and prevented myocardial ferroptosis. Network pharmacology analysis and CETSA experiments predicted that THCQD may protect against SICD by activating the Nrf2 signaling pathway. Western blotting and immunofluorescence showed that THCQD activated Nrf2 in cardiac tissue. THCQDs consistently mitigated RSL3-induced ferroptosis in NRCM, which is related to Nrf2. Furthermore, the pharmacological inhibition of Nrf2 and genetic Nrf2 knockout partially reversed the protective effects of THCQD on SICD and ferroptosis. CONCLUSION: The effect of THCQD on SICD was achieved by activating Nrf2 and its downstream pathways.


Assuntos
Medicamentos de Ervas Chinesas , Ferroptose , Fator 2 Relacionado a NF-E2 , Sepse , Animais , Masculino , Camundongos , Ratos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Ferroptose/efeitos dos fármacos , Cardiopatias/tratamento farmacológico , Cardiopatias/etiologia , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Farmacologia em Rede , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , Sepse/complicações , Sepse/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
5.
J Ethnopharmacol ; 302(Pt A): 115869, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36309116

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Glycyrrhizae (GL), a herbal medicine that is widely available, has shown advantages for a variety of inflammatory diseases. Toll like receptor 4 (TLR4) pathway has been shown to play a key role in the progression of inflammation. AIM OF THE STUDY: The purpose of this study was to investigate the involvement of TLR4 in the anti-inflammatory mechanism of GL extract and its active constituent on acute lung injury (ALI). MATERIALS AND METHODS: A model of inflammation produced by lipopolysaccharide (LPS) was established in C57BL/6 mice and macrophages derived from THP-1. To screen the active components of GL, molecular docking was used. Molecular dynamics and surface plasmon resonance imaging (SPRi) were used to study the interaction of a specific drug with the TLR4-MD2 complex. TLR4 was overexpressed by adenovirus to confirm TLR4 involvement in the anti-inflammatory activities of GL and the chosen chemical. RESULTS: We observed that GL extract significantly reduced both LPS-induced ALI and the production of pro-inflammatory factors including TNF-α, IL-6 and IL-1ß. Additionally, GL inhibited the binding of Alexa 488-labeled LPS (LPS-488) to the membrane of THP-1 derived macrophages. GL drastically reduce on the expression of TLR4 and the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-B (NF-κB). Furthermore, molecular docking revealed that Licochalcone A (LicoA) docked into the LPS binding site of TLR4-MD2 complex. MD2-LicoA binding conformation was found to be stable using molecular dynamic simulations. SPRi indicated that LicoA bound to TLR4-MD2 recombinant protein with a KD of 3.87 × 10-7 M. LicoA dose-dependently reduced LPS-488 binding to the cell membrane. LicoA was found to significantly inhibit LPS-induced lung damage and inflammation. Furthermore, LicoA inhibited TLR4 expression, MAPK and NF-κB activation in a dose-dependent manner. The inhibitory effects of GL and LicoA on LPS-induced inflammation and TLR4 signaling activation were partly eliminated by TLR4 overexpression. CONCLUSION: Our findings imply that GL and LicoA exert inhibitory effects on inflammation by targeting the TLR4 directly.


Assuntos
Lesão Pulmonar Aguda , Receptor 4 Toll-Like , Camundongos , Animais , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Antígeno 96 de Linfócito/metabolismo , Anti-Inflamatórios/efeitos adversos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Inflamação/induzido quimicamente
6.
Phytomedicine ; 121: 155118, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801895

RESUMO

BACKGROUND: With an increasing number of myocardial infarction (MI) patients, myocardial fibrosis is becoming a widespread health concern. It's becoming more and more urgent to conduct additional research and investigations into efficient treatments. Ethyl ferulate (EF) is a naturally occurring substance with cardioprotective properties. However, the extent of its impact and the underlying mechanism of its treatment for myocardial fibrosis after MI remain unknown. PURPOSE: The goal of this study was to look into how EF affected the signaling of the TGF-receptor 1 (TGFBR1) in myocardial fibrosis after MI. METHODS: Echocardiography, hematoxylin-eosin (HE) and Masson trichrome staining were employed to assess the impact of EF on heart structure and function in MI-affected mice in vivo. Cell proliferation assay (MTS), 5-Ethynyl-2'-deoxyuridine (EdU), and western blot techniques were employed to examine the influence of EF on native cardiac fibroblast (CFs) proliferation and collagen deposition. Molecular simulation and surface plasmon resonance imaging (SPRi) were utilized to explore TGFBR1 and EF interaction. Cardiac-specific Tgfbr1 knockout mice (Tgfbr1ΔMCK) were utilized to testify to the impact of EF. RESULTS: In vivo experiments revealed that EF alleviated myocardial fibrosis, improved cardiac dysfunction after MI and downregulated the TGFBR1 signaling in a dose-dependent manner. Moreover, in vitro experiments revealed that EF significantly inhibited CFs proliferation, collagen deposition and TGFBR1 signaling followed by TGF-ß1 stimulation. More specifically, molecular simulation, molecular dynamics, and SPRi collectively showed that EF directly targeted TGFBR1. Lastly, knocking down of Tgfbr1 partially reversed the inhibitory activity of EF on myocardial fibrosis in MI mice. CONCLUSION: EF attenuated myocardial fibrosis post-MI by directly suppressing TGFBR1 and its downstream signaling pathway.


Assuntos
Infarto do Miocárdio , Miocárdio , Humanos , Camundongos , Animais , Miocárdio/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/uso terapêutico , Fibroblastos/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Colágeno/metabolismo , Fibrose , Fator de Crescimento Transformador beta1/metabolismo
7.
Food Funct ; 13(6): 3234-3246, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35213678

RESUMO

Background: Abnormal proliferation of vascular smooth muscle cells (VSMCs) in the intimal region is a key event in the development of neointimal hyperplasia. 10-G, a bioactive compound found in ginger, exerted inhibitory effects on the proliferation of several cancer cells. However, the effect and mechanism of 10-G on neointimal hyperplasia are not clear. Purpose: To explore the suppressive effects of 10-G on the proliferation and migration of VSMCs, and investigate the underlying mechanisms. Methods: In vivo, a left common carotid artery ligation mouse model was used to observe the effects of neointimal formation through immunohistochemistry and hematoxylin-eosin staining. In vitro, the cell proliferation and migration of HASMCs and A7r5 cells were detected by MTS assay, EdU staining, wound healing assay, Transwell assay, and western blotting as well. Molecular docking, molecular dynamics simulations and surface plasmon resonance imaging were collectively used to evaluate the interaction of 10-G with AMP-activated protein kinase (AMPK). Compound C and si-AMPK were used to inhibit the expression of AMPK. Results: Treatment with 10-G significantly reduced neointimal hyperplasia in the left common carotid artery ligation mouse model. MST and EdU staining showed that 10-G inhibited the proliferation of VSMC cells A7r5 and HASMC. We also found that 10-G altered the expression of proliferation-related proteins, including CyclinD1, CyclinD2, CyclinD3, and CDK4. Molecular docking revealed that the binding energy between AMPK and 10-G is -7.4 kcal mol-1. Molecular simulations suggested that the binding between 10-G and AMPK is stable. Surface plasmon resonance imaging analysis also showed that 10-G has a strong binding affinity to AMPK (KD = 6.81 × 10-8 M). 10-G promoted AMPKα phosphorylation both in vivo and in vitro. Blocking AMPK by an siRNA or AMPK inhibitor pathway partly abolished the anti-proliferation effects of 10-G on VSMCs. Conclusion: These data showed that 10-G might inhibit neointimal hyperplasia and suppress VSMC proliferation by the activation of AMPK as a natural AMPK agonist.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Neointima/patologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/química , Animais , Catecóis/química , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática , Álcoois Graxos/química , Humanos , Hiperplasia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Simulação de Acoplamento Molecular , Músculo Liso Vascular/efeitos dos fármacos , Fosforilação , Conformação Proteica , Ratos , Transdução de Sinais , Ressonância de Plasmônio de Superfície , Serina-Treonina Quinases TOR/metabolismo
8.
Phytomedicine ; 95: 153705, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34538671

RESUMO

BACKGROUND: Liver cancer is one of the leading causes of cancer-related death worldwide. Dihydrotanshinone I (DHI) was shown to inhibit the growth of several types of cancer. However, research related to hepatoma treatment using DHI is limited. PURPOSE: Here, we explored the inhibitory effect of DHI on the growth of hepatoma cells, and investigated the underlying molecular mechanisms. METHODS: The proliferation of Hep3B, SMCC-7721 and SK-Hep1 hepatoma cells was evaluated using the MTS and Edu staining assay. Hepatoma cell death was analyzed with a LIVE/DEAD Cell Imaging Kit. The relative expression and phosphorylation of proto-oncogene tyrosine-protein kinase Src (Src) and signal transducer and activator of transcription-3 (STAT3) proteins in hepatoma cells, as well as the expression of other protein components, were measured by western blotting. The structural interaction of DHI with Src proteins was evaluated by molecular docking, molecular dynamics simulation, surface plasmon resonance imaging and Src kinase inhibition assay. Src overexpression was achieved by infection with an adenovirus vector encoding human Src. Subsequently, the effects of DHI on tumor growth inhibition were further validated using mouse xenograft models of hepatoma. RESULTS: In vitro studies showed that treatment with DHI inhibited the proliferation and promoted cell death of Hep3B, SMCC-7721 and SK-Hep1 hepatoma cells. We further identified and verified Src as a direct target of DHI by using molecular stimulation, surface plasmon resonance image and Src kinase inhibition assay. Treatment with DHI reduced the in vitro phosphorylation levels of Src and STAT3, a transcription factor regulated by Src. In the xenograft mouse models, DHI dose-dependently suppressed tumor growth and Src and STAT3 phosphorylation. Moreover, Src overexpression partly abrogated the inhibitory effects of DHI on the proliferation and cell death in hepatoma cells. CONCLUSION: Our results suggest that DHI inhibits the growth of hepatoma cells by direct inhibition of Src.


Assuntos
Carcinoma Hepatocelular , Furanos/farmacologia , Fenantrenos , Quinonas/farmacologia , Quinases da Família src/antagonistas & inibidores , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Camundongos , Simulação de Acoplamento Molecular , Fenantrenos/farmacologia , Fosforilação , Fator de Transcrição STAT3/metabolismo , Quinases da Família src/metabolismo
9.
PLoS One ; 12(2): e0170984, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28182689

RESUMO

The protective effects of ilexsaponin A on ischemia-reperfusion-induced myocardial injury were investigated. Myocardial ischemia/reperfusion model was established in male Sprague-Dawley rats. Myocardial injury was evaluated by TTC staining and myocardial marker enzyme leakage. The in vitro protective potential of Ilexsaponin A was assessed on hypoxia/reoxygenation cellular model in neonatal rat cardiomyocytes. Cellular viability and apoptosis were evaluated by MTT and TUNEL assay. Caspase-3, cleaved caspase-3, bax, bcl-2, p-Akt and Akt protein expression levels were detected by western-blot. Ilexsaponin A treatment was able to attenuate the myocardial injury in ischemia/reperfusion model by reducing myocardial infarct size and lower the serum levels of LDH, AST and CK-MB. The in vitro study also showed that ilexsaponin A treatment could increase cellular viability and inhibit apoptosis in hypoxia/reoxygenation cardiomyocytes. Proapoptotic proteins including caspase-3, cleaved caspase-3 and bax were significantly reduced and anti-apoptotic protein bcl-2 was significantly increased by ilexsaponin A treatment in hypoxia/reoxygenation cardiomyocytes. Moreover, Ilexsaponin A treatment was able to increase the expression levels of p-Akt in hypoxia/reoxygenation cellular model and myocardial ischemia/reperfusion animal model. Coupled results from both in vivo and in vitro experiments indicate that Ilexsaponin A attenuates ischemia-reperfusion-induced myocardial injury through anti-apoptotic pathway.


Assuntos
Apoptose/efeitos dos fármacos , Cardiotônicos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Saponinas/uso terapêutico , Animais , Cardiotônicos/farmacologia , Hipóxia Celular , Células Cultivadas , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Saponinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA