Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Sci Technol ; 55(3): 1769-1778, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33494598

RESUMO

The selective sorption of dissolved organic matter (DOM) on minerals is a widespread geochemical process in the natural environment. Recent studies have explored the influence of this process on the molecular fractionation of DOM at water-mineral interfaces. However, it remains unclear how molecular fractionation affects the photochemistry of DOM. Here, we demonstrate that the adsorptive fractionation of DOM on ferrihydrite greatly reduces its photoproduction of reactive oxygen species (ROS) including 1O2, O2•-, and •OH normalized to organic carbon (ROSOC). The ROSOC for 1O2, O2•-, and •OH were positively correlated with the abundances of polyphenols and oxygenated polycyclic aromatics, which were also observed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis to be preferentially sequestered by ferrihydrite. The molecules that preferentially remained in the solution after adsorption displayed low levels of ROSOC. The molecular fractionation of DOM induced by adsorption on ferrihydrite therefore influenced the molecular components and also significantly reduced the photoreactive fractions of DOM in waters. These results are very important in promoting our understanding of the effects of molecular fractionation on the biogeochemical features, behaviors, and implications of DOM in the environment.


Assuntos
Fracionamento Químico , Compostos Férricos , Adsorção , Minerais
2.
Nonlinear Dyn ; 105(1): 417-437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34219968

RESUMO

This paper investigates the event-triggered model predictive control of positive systems with actuator saturation. Interval and polytopic uncertainties are imposed on the systems, respectively. First, a new model with actuator saturation obeying Bernoulli distribution is established, which is more general and powerful for describing the saturation phenomenon than the saturation in a deterministic way. Then, a linear event-triggering condition is constructed based on the state and error signal. Under the event-triggering condition, an interval estimate approach is presented to reach the positivity and stability of the systems. The saturation part in the controller is technically transformed into a non-saturation part. Thus, a linear programming approach is proposed to compute the event-triggered controller gain and the corresponding gain of attraction domain. A predictive algorithm is introduced for the computation of the event-triggered controller parameters. Finally, an example is provided to illustrate the validity of the design.

3.
Environ Sci Technol ; 54(2): 902-910, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31886656

RESUMO

The reduction of ferric iron (Fe(III)) to ferrous iron (Fe(II)) by dissimilatory iron-reducing bacteria is widespread in anaerobic environments. The oxidation of Fe(II) in aerobic environments has been found to produce hydroxyl radicals (•OH); however, the role of iron-reducing bacteria in the process has not been well understood. Here, Shewanella oneidensis MR-1-mediated redox transformation of four typical iron (oxyhydr)oxides and the production of reactive oxygen species were investigated. The results showed that the production of •OH was mainly determined by the insoluble Fe(II) formed during microbially mediated reduction and also mediated by the mineralogical phase. Moreover, this study for the first time observed the exogenetic iron-independent production of •OH by S. oneidensis MR-1, and the integrated pathway of •OH generation during the iron redox process was revealed. Superoxide (O2•-) was indicated as a key intermediate species that was produced by both abiotic and biotic pathways, and •OH was generated by both the exogenetic iron-dependent Fenton-like reaction and exogenetic iron-independent pathways. S. oneidensis MR-1 played a pivotal role in both the reduction of Fe(III) and the production of O2•-. These findings contribute substantially to our understanding of the generation mechanism of reactive oxygen species at oxidation-reduction boundaries in the environment.


Assuntos
Ferro , Shewanella , Compostos Férricos , Radical Hidroxila , Oxirredução , Óxidos
4.
Water Res ; 195: 116988, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33714011

RESUMO

Microbial dissimilatory iron reduction and aerobic oxidation affect the biogeochemical cycles of many elements. Although the processes have been widely studied, the underlying mechanisms, and especially how the surface structures of iron oxides affect these redox processes, are poorly understood. Therefore, {001} facet-dominated hematite nanoplates (HNP) and {100} facet-dominated hematite nanorods (HNR) were used to explore the effects of surface structure on the microbial dissimilatory iron reduction and aerobic oxidation processes. During the reduction stage, the production of total Fe(II) normalized by specific surface area (SSA) was higher for HNP than HNR due to steric effects and the ligand-bound conformation of the connection between iron on different exposed facets and electron donors from microorganisms. However, during the aerobic oxidation stage, both the SSA- and Fe(II)-normalized reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and hydroxyl radical (•OH), were higher for HNR than HNP. Theoretical calculation results showed that the {100} facets exhibited a lower activation energy barrier for oxygen reduction reaction than {001} facets, supporting the experimental observation that {100} facet-dominated HNR had a higher ROS production efficiency than {001} facet-dominated HNP. These results indicated that surface characteristics not only mediated the microbial reduction of Fe(III) but also affected the aerobic oxidation of microbially reduced Fe(II). Accessibility of electron donors to surface iron atom determined the reduction of Fe(III), and activation energy barrier for oxygen reduction by surface Fe(II) dominated the ROS production during the redox processes. This study advances our understanding of the mechanisms through which ROS are produced by iron (oxyhydr)oxides during microbial dissimilatory iron reduction and aerobic oxidation processes.


Assuntos
Compostos Férricos , Shewanella , Peróxido de Hidrogênio , Ferro , Oxirredução , Espécies Reativas de Oxigênio
5.
Water Res ; 196: 117034, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33756111

RESUMO

Manganese (Mn) oxides are ubiquitous in the environment and have strong reactivity to induce the transformation of various contaminants. However, whether reactive oxygen species contribute to their surface reactivity remains unclear. Here, sustainable production of superoxide radicals (O2•-) by various MnO2 polymorphs in the dark was quantified and the mechanisms involved were explored. The results confirm that O2•- was produced through one-electron transfer from surface Mn(III) to adsorbed O2. In contrast, no H2O2 was detected due to its decomposition by Mn oxides to form O2•- and Mn(III), leading to the sustained production of O2•- on Mn oxide surfaces. In addition, the production of O2•- was found to make a clear contribution (4 - 28%) to the transformation of a series of halophenols by MnO2, suggesting that the O2•--mediated surface reaction is an important supplement to the direct electron-transfer mechanism in the reactivity of Mn oxides. These findings advance our understanding of the surface reactivity of Mn oxides and also reveal an important but hitherto unrecognized abiotic source of O2•- in the natural environment.


Assuntos
Compostos de Manganês , Óxidos , Manganês , Oxirredução , Superóxidos
6.
Sci Total Environ ; 771: 144643, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33540166

RESUMO

Antimony (Sb), a regulated contaminant, is added as a catalyst in the process of polyethylene terephthalate (PET) synthesis. Previously, Sb release from PET bottles and films was studied. However, Sb release from PET fibers (the most common form of PET) is limited. Therefore, a network model of material flow for PET fibers in China is developed, and the anthropogenic Sb flow and release entering into the hydrosphere, pedosphere, and atmosphere are studied based on microexperiments and macromodels. To compensate for the uncertainty caused by material flow analysis, Sb pollution in the surrounding areas (the drinking water of nearby residents and sediments of nearby river area) is further explored by combining field investigations and sample analysis. The results are as follows: 1) the manufacture stage of PET fibers is the main source of Sb release (2926 t), followed by the dyeing (2223 t) and weaving (908 t) stages; 2) Sb release (1108 t) from waste PET fibers subjected to landfill disposal is the highest. Sb release (872 t) from discarded fiber waste is second highest. Sb release from PET fibers subjected to mechanical recycling, incineration, and chemical recycling is 784, 284, and 25 t, respectively; and 3) an obvious source-sink relationship is found between anthropogenic Sb in the rivers and sediments and the intensity of the industries. This study suggests that Sb from PET fibers should be properly managed to prevent widespread dispersion in the hydrosphere, pedosphere, and atmosphere.

7.
Environ Sci Pollut Res Int ; 25(1): 141-152, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28039624

RESUMO

The soils around the world's largest antimony mine have been contaminated by high concentrations of Sb and As, which might influence microbial diversity in the surrounding soils. The ecological effects of bioavailable Sb and As on the composition and diversity of microbial community in soils remain unknown. In this study, the relative abundance, taxonomic diversity and composition of bacterial community in soils from a typical Sb mine area, and the relationship between the bacterial community and bioavailable concentrations as well as environmental factors have been investigated comprehensively using high-throughput sequencing (HTS) and diffusive gradients in thin films (DGT). The results indicated that Proteobacteria, Acidobacteria, Chloroflexi, Bacteroidetes, Actinobacteria, Gemmatimonadetes, and Cyanobacteria were the dominant bacterial populations at phylum level in all soil samples, accounting for more than 80% of the bacteria sequenced. The abundance and diversity of bacterial community vary along a metal contamination gradient. Redundancy discriminate analysis (RDA) revealed that 74.74% of bacterial community variation in the contaminated soils was explained by six environmental factors (pH, SbDGT, AsDGT, potential ecological risk index (RI), TC, TN), among which pH, SbDGT, and AsDGT were dominant factors influencing the composition and diversity of bacteria. This study contributes to our understanding of microbial diversity in a local ecosystem and introduces the option of studying bioavailable Sb and As using DGT.


Assuntos
Antimônio/análise , Bactérias/classificação , Mineração , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Bactérias/genética , Biodiversidade , China , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA