RESUMO
Transition-metal-catalyzed amination of aryl halides is a useful approach for the synthesis of medicinal compounds, organic functional materials, and agrochemical compounds. A systematic DFT study has been performed to investigate the mechanism of the Co(I)-catalyzed amination of aryl halides by LiN(SiMe3)2 using (PPh3)3CoCl as the precatalyst. Our computational results suggest that the most favorable dissociative concerted C-I activation pathway in a triplet state consists of (a) dissociation of one PPh3 ligand, (b) concerted oxidative addition (OA) of the C-I bond, (c) transmetalation, (d) (optional) dissociation of the second PPh3 ligand, (e) C-N bond-forming reductive elimination (RE), and (f) ligand exchange to regenerate the active species. Comparatively, the associative concerted OA, radical, SH2/SN2, single electron transfer (SET), and σ-bond metathesis pathways should be less favorable due to their higher barriers or unfavorable reaction free energies. The effects of different metals (Rh and Ir) as centers in the catalyst were further examined and found to require higher reaction barriers, due to unfavorable dissociation of their stronger M-PPh3 bonds. These results highlight an advantage of the earth-abundant Co catalysts for the dissociative pathway(s). Overall, our study offers deeper mechanistic insights for the transition-metal-catalyzed amination and guides the design for efficient Co-based catalysts.
Assuntos
Cobalto , Aminação , Ligantes , CatáliseRESUMO
In the process of marine oil spill remediation, adding highly efficient oil degrading microorganisms can effectively promote oil degradation. However, in practice, the effect is far less than expected due to the inadaptability of microorganisms to the environment and their disadvantage in the competition with indigenous bacteria for nutrients. In this article, four strains of oil degrading bacteria were isolated from seawater in Jiaozhou Bay, China, where a crude oil pipeline explosion occurred seven years ago. Results of high-throughput sequencing, diesel degradation tests and surface activity tests indicated that Peseudomonas aeruginosa ZS1 was a highly efficient petroleum degrading bacterium with the ability to produce surface active substances. A diesel oil-degrading bacterial consortium (named SA) was constructed by ZS1 and another oil degrading bacteria by diesel degradation test. Degradation products analysis indicated that SA has a good ability to degrade short chain alkanes, especially n-alkanes (C10-C18). Community structure analysis showed that OTUs of Alcanivorax, Peseudomona, Ruegeria, Pseudophaeobacter, Hyphomonas and Thalassospira on genus level increased after the oil spill and remained stable throughout the recovery period. Most of these enriched microorganisms were related to known alkane and hydrocarbon degraders by the previous study. However, it is the first time to report that Pseudophaeobacter was enriched by using diesel as the sole carbon source. The results also indicated that ZS1 may have a dominant position in competition with indigenous bacteria. Oil pollution has an obvious selective effect on marine microorganisms. Although the oil degradation was promoted after SA injection, the recovery of microbial community structure took a longer time.
Assuntos
Poluição por Petróleo , Petróleo , Alcanos/metabolismo , Bactérias , Biodegradação Ambiental , Hidrocarbonetos/análise , Petróleo/análise , Poluição por Petróleo/análise , Água do Mar/microbiologiaRESUMO
A dinuclear, Cu(I)-catalyzed reductive CO2 coupling reaction was recently developed to selectively yield a metal-oxalate product through electrochemical means, instead of the usual formation of carbonate and CO ( Science 2010 , 327 , 313 ). To shed light on the mechanism of this important and unusual reductive coupling reaction, extensive and systematic density functional theory (DFT) calculations on several possible pathways and spin states were performed in which a realistic system up to 164 atoms was adopted. Our calculations support the observation that oxalate formation is energetically more favorable than the formation of carbonate and CO products in this cationic Cu(I) complex. Spatial confinement of the realistic catalyst (a long metal-metal distance) was found to further destabilize the carbonate formation, whereas it slightly promotes oxalate formation. Our study does not support the proposed diradical coupling mechanism. Instead, our calculations suggest a new mechanism in which one CO2 molecule is first reduced cooperatively by two Cu(I) metals to give a new, fully delocalized mixed-valence Cu2I/II(CO2â¢-) radical anion intermediate (analogues to Type 4 Cu center, CuA), followed by further partial reduction of the metal-ligated CO2 molecule and (metal-mediated) nucleophilic-like attack on the carbon atom of an incoming second CO2 molecule to afford the dinuclear Cu(II)-oxalate product. Overall, our proposed reaction mechanism involves a closed-shell reactant as well as two open-shell transition states and products. The effects of size, charge, and catalyst metal on the oxalate formation were also investigated and compared.
RESUMO
Combined experimental and theoretical investigations into the phenyliodine bis(trifluoroacetate) (PIFA)-mediated reaction of N-arylcinnamamide to produce 3-arylquinolin-2-one derivatives have been conducted. High regioselectivity during the aryl migration process was observed in 3,3-disubstituted acrylamides. Density functional theory calculation was conducted in an attempt to understand the mechanism and the origin of the regioselectivity. On the basis of both the experimental and the theoretical results, a mechanism involving an oxidative annulation, followed by an aryl migration, has been proposed. The annulation is the regioselectivity determining step.
RESUMO
A highly sensitive and selective chemiluminescent (CL) biosensor for adenosine triphosphate (ATP) was developed by taking advantage of the ATP-dependent enzymatic reaction (ATP-DER), the powerful signal amplification capability of rolling circle amplification (RCA), and hydroxylamine-amplified gold nanoparticles (Au NPs). The strategy relies on the ability of ATP, a cofactor of T4 DNA ligase, to trigger the ligation-RCA reaction. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction between the two ends of the padlock probe, producing a closed circular DNA template that initiates the RCA reaction with phi29 DNA polymerase and dNTP. Therein, many complementary copies of the circular template can be generated. The ATP-DER is eventually converted into a detectable CL signal after a series of processes, including gold probe hybridization, hydroxylamine amplification, and oxidative gold metal dissolution coupled with a simple and sensitive luminol CL reaction. The CL signal is directly proportional to the ATP level. The results showed that the detection limit of the assay is 100 pM of ATP, which compares favorably with those of other ATP detection techniques. In addition, by taking advantage of ATP-DER, the proposed CL sensing system exhibits extraordinary specificity towards ATP and could distinguish the target molecule ATP from its analogues. The proposed method provides a new and versatile platform for the design of novel DNA ligation reaction-based CL sensing systems for other cofactors. This novel ATP-DER based CL sensing system may find wide applications in clinical diagnosis as well as in environmental and biomedical fields.
Assuntos
Trifosfato de Adenosina/sangue , Ouro/química , Hidroxilamina/química , Medições Luminescentes/métodos , Nanopartículas Metálicas/química , Trifosfato de Adenosina/análise , Técnicas Biossensoriais/métodos , Humanos , Limite de Detecção , Luminol/análise , Técnicas de Amplificação de Ácido Nucleico/métodosRESUMO
In contrast to the typical Csp2-H activation, a PN3P-Nickel complex chemoselectively cleaved the benzylic Csp3-H bond of toluene in the presence of KHMDS, presumably via an in situ generated potassium benzyl intermediate. Under similar conditions, CO underwent deoxygenation to afford the corresponding nickel cyano complex, and ethylbenzene was dehydrogenated to give styrene and a nickel hydride compound. 2,6-Xylyl isocyanide was transformed into an unprecedented indolyl complex, likely by trapping the activated benzyl species with an isocyanide moiety.
RESUMO
In order to study the deterioration and mechanism of dry-wet cycles and sulfate attack on the performance of concrete in seaside and saline areas, the deterioration of compressive strength of concrete with different water cement ratios under different erosion environments (sodium sulfate soaking at room temperature and coupling of dry-wet cycling and sodium sulfate) was studied here. At the same time, ICT (industrial computed tomography) and NMR (nuclear magnetic resonance) techniques were used to analyze the internal pore structure of concrete under different erosion environments. The results show that the compressive strength under different erosion environments increases first and then decreases, and the dry-wet cycle accelerates the sulfate erosion. With the increase of dry and wet cycles, larger pores are filled with erosion products and developed into small pores in the early stage of erosion; in the later stage of erosion, the proportion of larger pores increases, and cracks occur inside the sample. In the process of sulfate soaking and erosion, the smaller pores in the concrete account for the majority. As the sulfate erosion continues, the T2 spectrum distribution curve gradually moves right, and the signal intensity of the larger pores increases.
RESUMO
Formic acid (FA) has been extensively studied as one of the most promising hydrogen energy carriers today. The catalytic decarboxylation of FA ideally leads to the formation of CO2 and H2 that can be applied in fuel cells. A large number of transition-metal based homogeneous catalysts with high activity and selectivity have been reported for the selective FA dehydrogentaion. In this review, we discussed the recent development of C,N/N,N-ligand and pincer ligand-based homogeneous catalysts for the FA dehydrogenation reaction. Some representative catalysts are further evaluated by the CON/COF assessment (catalyst on-cost number)/(catalyst on-cost frequency). Conclusive remarks are provided with future challenges and opportunities.
RESUMO
H2 heterolysis to generate well-defined nickel hydride-proton complexes was achieved by the 2nd generation PN3P-pincer nickel platform. The regioselective protonation in the ligand framework was demonstrated for the first time to highlight the importance of in-plane hindrance during the H2 splitting process.
RESUMO
Hydrogenation catalyzed by unusually low-valent Co(-I) and Fe(-I) catalysts were recently reported. In contrast to the classical M(I)/M(III) (M = Rh or Ir) or Ir(III)/Ir(V) catalytic cycles in the singlet state (adiabatic reactions) for Rh- or Ir-catalyzed hydrogenation, our systematic DFT study elucidates a new Co(-I)/Co(0)/Co(+I) catalytic cycle involving both singlet and triplet states (nonadiabatic reaction). Also, the more electron-rich cobalt center of the Co(-I) catalyst was found to contribute higher reactivity for alkene hydrogenation.
RESUMO
The objective of this manuscript is to study the effects of nano-particle addition on the durability and internal deterioration of concrete subject to freezing and thawing cycles (FTCs). Fifteen nm of SiO2, 30 nm of SiO2, and 30 nm of TiO2 were added to concrete to prepare specimens with different contents. All the specimens were subjected to FTCs from 0 to 75. The mass of each specimen was measured once the FTCs reached 25, 50, and 75. Then the freezing and thawing resistance of the concrete was evaluated by computing the mass loss ratio. The pore fluid size distribution of the concrete was detected using nuclear magnetic resonance (NMR). The deterioration of the concrete subjected to FTCs was detected by industrial computed tomography (CT). The effect of different nano-particle sizes, different contents of nano-particles, and different types of nano-particles on the freezing and thawing resistance, the pore size, distribution, and the deterioration of the concrete were analyzed. The effects of FTCs on the pore size distribution and the internal deterioration of concrete were also studied. Compared to 30 nm-Nono-SiO2 (NS), 15 nm-NS had a better effect in improving the internal structure for concrete, and 30 nm-Nano-TiO2 (NT) also had a better effect in preventing pore and crack expansion.
RESUMO
An efficient approach for synthesizing chiral ß-amino nitroalkanes has been developed via the Ni-catalyzed asymmetric hydrogenation of challenging ß-amino nitroolefins under mild conditions, affording the desired products in excellent yields and with high enantioselectivities. This protocol had good compatibility with the wide substrate scope and a range of functional groups. The synthesis of chiral ß-amino nitroalkanes on a gram scale has also been achieved. In addition, the reaction mechanism was elucidated using a combined experimental and computational study, and it involved acetate-assisted heterolytic H2 cleavage followed by 1,4-hydride addition and protonation to achieve the nitroalkanes.