Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Yao Xue Xue Bao ; 51(4): 642-9, 2016 04.
Artigo em Zh | MEDLINE | ID: mdl-29860751

RESUMO

cRGD-carboxymethyl chitosan-palmitic acid (cRGD-CMCh-PA) was synthesized and a pH- sensitive paclitaxel-loaded cRGD-CMCh-PA micelles(PTX-cRGD-CMCh-PA) was prepared with the film dispersion method; related substances were characterized by FT-IR and (1)H NMR. PTX-cRGD-CMCh-PA micelles were studied with the particle size distribution, zeta potential, morphology and release behavior in vitro was investigated by the method of equilibrium dialysis. In vitro cytotoxicity of different formulations on A549 cells was tested by MTT assay. The uptake process of micelles was explored using confocal microscopy and a live cell station was used to observe the dynamic phagocytosis. The subcutaneous and orthotropic tumor models were built to study the distribution of Di R-labeled micelles by near-infrared fluorescence(NIR) imaging system. The FT-IR spectra and (1)H NMR spectra confirmed the successful conjugation of cRGD-CMCh-PA polymer and the degree of carboxymethyl and the palmitic acid grafted on chitosan were 45.0% and 15.0%. PTX-cRGD-CMCh-PA micelles were prepared with particle size of(162.9 ± 1.5) nm, zeta potential of +26.3 m V and encapsulation efficiency and the drug loading of 99.67% and 28.5%, respectively. The micelles released slowly in pH 7.4 whose release curves were accorded with the Higuchi equation; they had an initial burst effect in second hours and showed a pH sensitive release behavior in pH 5.3. The IC(50) of PXT-CMCh-PA and PTX-cRGD-CMCh-PA were 2.077 µg·mL(-1) and 0.876 µg·mL(-1), respectively. The cells uptake process of micelles in A549 cells revealed that the micelles were mainly co-located with lysosome and PTX-cRGD-CMCh- PA showed much better targeting effect. The NIR fluorescence imaging results showed that the micelles had a good targeting effect on both subcutaneous and orthotropic tumors. In this study, a novel copolymer cRGD- CMCh-PA was synthesized with a sustained and pH-dependent drug release activity which would potentially become a new carrier for hydrophobic drugs.


Assuntos
Quitosana/análogos & derivados , Portadores de Fármacos/química , Oligopeptídeos/química , Paclitaxel/administração & dosagem , Ácido Palmítico/química , Células A549 , Antineoplásicos Fitogênicos/administração & dosagem , Quitosana/química , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Micelas , Tamanho da Partícula , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Pak J Pharm Sci ; 29(4): 1217-21, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27393434

RESUMO

The protective potential of the methanol extract of Macrothelypteris oligophlebia rhizomes (MMO) for chronic non-bacterial prostatitis (CNP) in rats was investigated in the present study. Carrageenan-induced CNP in rats was established. Fifty rats were randomly divided into sham-operated (sham-ope) group, model group, positive control group (Cernilton at a dose of 148mg/kg body weight) and two MMO-treated groups (MMO at doses of 600mg/kg and 300 mg/kg body weight). The anti-prostatitis effect was evaluated by prostate index, the levels of interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2), and histopathological examination. After 20 days of administration, MMO could significantly decrease prostate index and the levels of IL-10, TNF-α COX-2 and PGE2 in serum and could improve the prostate morphology in comparison with the model group. In summary, these results suggest that MMO possesses protective effects on prostate, which might be beneficial to further development for the treatment of CNP.


Assuntos
Gleiquênias , Extratos Vegetais/uso terapêutico , Prostatite/tratamento farmacológico , Animais , Doença Crônica , Masculino , Fitoterapia , Ratos , Ratos Sprague-Dawley , Rizoma
3.
J Huazhong Univ Sci Technolog Med Sci ; 34(1): 125-130, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24496691

RESUMO

Dioscin is a natural steroid saponin derived from several plants, showing potent anti-cancer effect against a variety of tumor cell lines. In the present study, we investigated the anti-cancer activity of dioscin against human LNCaP cells, and evaluated the possible mechanism involved in its antineoplastic action. It was found that dioscin (1, 2 and 4 µmol/L) could significantly inhibit the viability of LNCaP cells in a time- and concentration-dependent manner. Flow cytometry revealed that the apoptosis rate was increased after treatment of LNCaP cells with dioscin for 24 h, indicating that apoptosis was an important mechanism by which dioscin inhibited cancer. Western blotting was employed to detect the expression of caspase-3, Bcl-2 and Bax in LNCaP cells. The expression of cleaved caspase-3 was significantly increased, and meanwhile procaspase-3 was markedly decreased. The expression of anti-apoptotic protein Bcl-2 was down-regulated, whereas the pro-apoptotic protein Bax was up-regulated. Moreover, the Bcl-2/Bax ratio was drastically decreased. These results suggested that dioscin possessed potential anti-tumor activity in human LNCaP cells through the apoptosis pathway, which might be associated with caspase-3 and Bcl-2 protein family.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Diosgenina/análogos & derivados , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diosgenina/química , Diosgenina/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Citometria de Fluxo , Humanos , Masculino , Estrutura Molecular , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fatores de Tempo , Proteína X Associada a bcl-2/metabolismo
4.
Nanomedicine ; 8(7): 1172-81, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22321383

RESUMO

N-Trimethyl chitosan (TMC) was synthesized and used to prepare lactosyl-norcantharidin TMC nanoparticles (Lac-NCTD-TMC-NPs) using an ionic cross-linkage process. Lac-NCTD-TMC-NPs with an average particle size of 120.6 ± 1.7 nm were obtained, with an entrapment efficiency of 69.29% ± 0.76%, and a drug-loading amount of 9.1% ± 0.07%. The release of Lac-NCTD-TMC-NPs in vitro was investigated through a dialysis method, and its sustained effect was evident. In the human liver cancer cell line HepG2, the half-maximum inhibiting concentration (IC(50)) of TMC-encapsulated Lac-NCTD (Lac-NCTD-TMC-NPs) was only 24.2% that of free Lac-NCTD at 24 hours. Lac-NCTD induced HepG2 cell death by triggering apoptosis. In vitro cellular uptake and in vivo NIR fluorescence real-time imaging both indicated a high targeting efficacy. In comparison with Lac-NCTD and Lac-NCTD chitosan NPs (Lac-NCTD-CS-NPs ), Lac-NCTD-TMC-NPs had the strongest antitumor activity on the murine hepatocarcinoma 22 subcutaneous model. FROM THE CLINICAL EDITOR: In this article the preparation of N-trimethyl chitosan-encapsulated lactosyl-norcantharidin nanoparticles is described that displayed efficient targeting and sustained release in a hepatocarcinoma SC murine model.


Assuntos
Antineoplásicos/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Quitosana/química , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas/tratamento farmacológico , Fígado/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Nanopartículas/química
5.
Yao Xue Xue Bao ; 47(8): 1001-5, 2012 Aug.
Artigo em Zh | MEDLINE | ID: mdl-23162895

RESUMO

The study is to observe the effect of racemic TJ0711 on blood pressure and heart rate as well as protection of cardiovascular system of renal hypertensive rats after long-term administration. The renal hypertensive models were established by the two-kidney, one-clip (2K1C) method in Wistar rats. Four weeks later, assigned the rats whose SBP had increased at least 4 kPa randomly into 5 groups: racemic TJ0711 10, 20 and 40 mg x kg(-1) groups, carvedilol control group, model group and sham group (n=10), ig administration once daily. The changes of BP (blood press) and HR (heart rate) before and after administration were measured by tail-cuff method weekly. Plasma samples of all animals were taken in 6-8 weeks, and plasma MDA as well as renin, angiotensin II (Ang II) and endothelin-1 (ET-1) levels were measured. Left ventricle was cut off after 9 weeks, and left ventricular weight index (LVWI) and hydroxyproline were measured. The significant decrease of the BP of TJ0711 40 mg x kg(-1) group was observed after TJ0711 ig administration for 4 weeks, and this effect remained till the end of the study. In 8th week, the systolic blood pressure values were: TJ0711 40 mg x kg(-1) group 18.93 +/- 1.82 kPa (vs 21.30 +/- 2.30 kPa, P < 0.05); 20 mg x kg(-1) group 20.68 +/- 3.29 kPa (vs 22.19 +/- 2.88 kPa). The plasma MDA level of all treated groups was significantly lower than that of model group, so were the plasma renin, Ang II and ET-1 levels (P < 0.05). LVWI and hydroxyproline content of myocardial tissue decreased to some extent, but was not significant as compared with that of model group. The study showed that TJ0711 repeated dosing could reduce BP level beginning from drug administration; besides block adrenal alpha and beta receptors to play an antihypertensive role. The sustained antihypertensive effect also related to reduce plasma vasoconstrictor substances and oxidation product MDA. These effects benefited cardiovascular protection.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Hipertensão Renal/fisiopatologia , Fenoxipropanolaminas/farmacologia , Angiotensina II/sangue , Animais , Anti-Hipertensivos/administração & dosagem , Endotelina-1/sangue , Feminino , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Hidroxiprolina/metabolismo , Hipertensão Renal/sangue , Estudos Longitudinais , Masculino , Malondialdeído/sangue , Tamanho do Órgão/efeitos dos fármacos , Fenoxipropanolaminas/administração & dosagem , Distribuição Aleatória , Ratos , Ratos Wistar , Renina/sangue
6.
Acta Biomater ; 153: 481-493, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162766

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system adapted from bacteria is a programmable nuclease-based genome editing tool. The long-lasting effect of gene silencing or correction is beneficial in cancer treatment. Considering the need to broaden the practical application of this technology, highly efficient non-viral vectors are urgently required. We prepared a multifunctional non-viral vector that could actively target tumor cells and deliver CRISPR/Cas9 plasmids into nuclei of cancer cells. Protamine sulfate (PS) which contains nuclear localization sequence was utilized to condense plasmid DNA and facilitate nuclei-targeted delivery. Liposome-coated protein/DNA complex avoided the degradation of nuclease in blood circulation. The obtained PS@Lip/pCas9 was further modified with distearoyl phosphoethanolamine-polyethylene glycol-hyaluronic acid (HA) to endow the vector ability to actively target tumor cell. Results suggested that PS@HA-Lip could deliver CRISPR/Cas9 plasmids into nuclei of tumor cells and induce genome editing effect. With the disruption of MTH1 (mutT homolog1) gene, the growth of non-small cell lung cancer was inhibited. Moreover, cell apoptosis in tumor tissue was promoted, and liver metastasis of non-small cell lung cancer (NSCLC) was reduced. Our study has provided a therapeutic strategy targeting MTH1 gene for NSCLC therapy. STATEMENT OF SIGNIFICANCE: CRISPR/Cas9 as a powerful tool for genome editing has drawn much attention. The long-lasting effect possesses unique advantage in cancer treatment. Non-viral vectors have high loading capacity, high safety and low immunogenicity, playing an important role in CRISPR/Cas9 delivery. In our study, a multifunctional non-viral vector for the efficient delivery of CRISPR/Cas9 plasmid was constructed. With the active targeting ligand and nuclei-targeting component, the cargo was efficiently delivered into cell nuclei and exerted genome editing effect. By using this vector, we successfully inhibited the growth and induced the apoptosis of non-small cell lung cancer by disrupting MTH1 expression with good safety. Our work provided an efficient non-vial vector for CRISPR/Cas9 delivery and explored the possibility for cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Sistemas CRISPR-Cas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Vetores Genéticos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Edição de Genes/métodos , DNA
7.
Iran J Basic Med Sci ; 25(3): 414-418, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35656184

RESUMO

Objectives: Cisplatin (CDDP) is a highly effective chemotherapeutic agent, but its clinical application has been limited by nephrotoxicity. Tanshinone Ⅰ (T-I), a phenanthrenequinone compound extracted from the Chinese herb Danshen, has been used to improve circulation and treat cardiovascular diseases. The aim of this study was to investigate the protective effect of T-I on CDDP-induced nephrotoxicity in mice. Materials and Methods: The BALB/c mouse models of nephrotoxicity were established by a single intraperitoneal injection of 20 mg/kg CDDP on the first day of the experiment. Three hours prior to CDDP administration, the mice were dosed with 10 mg/kg and 30 mg/kg T-I for 3 consecutive days intraperitoneally to explore nephroprotection of T-I. Results: Treatment with T-I significantly reduced blood urea nitrogen and creatinine levels in serum observed in CDDP-administered mice, especially at a dose of 30 mg/kg. T-I at 30 mg/kg significantly decreased malondialdehyde levels and increased glutathione levels and the enzymatic activity of catalase in kidney tissue compared to CDDP. Additionally, T-I (30 mg/kg) significantly reversed the CDDP-decreased expression level of superoxide dismutase 2 protein in renal tissue. Histopathological evaluation of the kidneys further confirmed the protective effect of T-I. Conclusion: The findings of this study demonstrate that T-I can protect against CDDP-induced nephrotoxicity through suppression of oxidative stress.

8.
J Control Release ; 333: 418-447, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33812919

RESUMO

Tumor-sensitivity, effective transport, and precise delivery to tumor cells of nano drug delivery systems (NDDs) have been great challenges to cancer therapy in recent years. The conventional targeting approach involves actively installing the corresponding ligand on the nanocarriers, which is prone to recognize the antigen blasts overexpressed on the surface of tumor cells. However, there are some probable limitations for the active tumor-targeting systems in vivo as follows: a. the limited ligand amount of modifications; b. possible steric hindrance, which was likely to prevent ligand-receptor interaction during the delivery process. c. the restrained antigen saturation highly expressed on the cell membrane, will definitely decrease the specificity and often lead to "off-target" effects of NDDs; and d. water insolubility of nanocarriers due to excess of ligands modification. Obviously, any regulation of receptors on surface of tumor cells exerted an important influence on the delivery of targeting systems. Herein, receptor upregulation was mostly desired for enhancing targeted therapy from the cellular level. This technique with the amplification of receptors has the potential to enhance tumor sensitivity towards corresponding ligand-modified nanoparticles, and thereby increasing the effective therapeutic concentration as well as improving the efficacy of chemotherapy. The enhancement of positively expressed receptors on tumor cells and receptor-dependent therapeutic agents or NDDs with an assembled "self-promoting" effect contributes to increasing cell sensitivity to NPs, and will provide a basic platform for clinical therapeutic practice. In this review, we highlight the significance of modulating various receptors on different types of cancer cells for drug delivery and therapeutic benefits.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/uso terapêutico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico
9.
Acta Biomater ; 136: 473-484, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571271

RESUMO

The continuous activation and expansion of tumor-specific T cells by various means are the main goal of cancer immunotherapy. Tumor cells overexpress fibrinogen-like protein 1 (FGL1) and programmmed death-ligand 1 (PD-L1), which respectively bind to lymphocyte-activation gene 3 (LAG-3) and programmmed death-1(PD-1) on T cells, forming important signaling pathways (FGL1/LAG-3 and PD-1/PD-L1) that negatively regulate immune responses. In order to interfere with the inhibitory function of FGL1 and PD-L1 proteins, we designed a new type of reactive oxygen species (ROS)-sensitive nanoparticles to load FGL1 siRNA (siFGL1) and PD-L1 siRNA (siPD-L1), which was formed from a stimuli-responsive polymer with a poly-l-lysine-thioketal and modified cis-aconitate to facilitate endosomal escape. Moreover, tumor-penetrating peptide iRGD and ROS-responsive nanoparticles were co-administered to further enhance the delivery efficiency of siFGL1 and siPD-L1, thereby significantly reducing the protein levels of FGL1 and PD-L1 in tumor cells. Our findings indicated that the dual delivery of FGL1/PD-L1 siRNA was a new and powerful treatment method, which was characterized by increasing the infiltration of effector CD4+ and CD8+ T cells, effectively alleviating the tumor immunosuppressive microenvironment. These findings also supported the superiority and feasibility of nanoparticle-mediated tumor immunotherapy, and may provide a different perspective for cancer treatment. STATEMENT OF SIGNIFICANCE: In addition to the idea that cancer vaccines can promote T cell immune responses, nanoparticle delivery modulators (such as small interfering RNA (siRNA) targeting immunosuppressive pathways) may provide more information for the research of nanoparticle-mediated cancer immunotherapy. In this study, we designed a new intelligent nano-delivery system for co-delivery of siFGL1 and siPD-L1, and demonstrated the ability to down-regulate the expression levels of FGL1 and PD-L1 proteins in tumor cells in vitro and in vivo. The constructed nanoparticle had a good tumor microenvironment responsiveness, and the delivery efficiency was enhanced by co-injection with tumor penetrating peptide iRGD. This project proposed a new strategy for tumor immunotherapy based on smart nano-delivery systems, and explored more possibilities for tumor therapy.


Assuntos
Antígeno B7-H1 , Fibrinogênio/administração & dosagem , Nanopartículas , Oligopeptídeos/uso terapêutico , Animais , Antígeno B7-H1/administração & dosagem , Linhagem Celular Tumoral , Imunoterapia , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio , Microambiente Tumoral
10.
Nanomedicine ; 6(2): 371-81, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19699319

RESUMO

In this study a new chitosan (CS) derivative, galactosylated chitosan (GC), was synthesized and used to prepare norcantharidin-associated GC nanoparticles (NCTD-GC NPs) by taking advantage of the ionic cross-linkage between the molecules of the anti-hepatocarcinoma medicine NCTD and of the GC as carrier. NCTD-GC NPs were obtained with average particle size of 118.68 +/- 3.37 nm, entrapment efficiency of 57.92 +/- 0.40%, and drug-loading amount of 10.38 +/- 0.06%. Several important factors influencing the entrapment efficiency, drug-loading amount, and particle size of NCTD-GC NPs were studied. The characteristics of sustained and pH-sensitive release of NCTD from NCTD-GC NPs in vitro were studied. In addition, in vitro cellular uptake and cytotoxicity of nanoparticles to hepatoma cell lines SMMC-7721 and HepG2 were also investigated. In vitro, and compared to CS-based NCTD-CS NPs, NCTD-GC NPs demonstrated satisfactory compatibility with hepatoma cells and strong cytotoxicity against hepatocellular carcinoma cells. In vivo antitumor activity of NCTD-GC NPs was evaluated in mice bearing H22 liver tumors. NCTD-GC NPs displayed tumor inhibition effect in mice, better than either the free NCTD or the NCTD-CS NPs. As a hepatocyte-targeting carrier, GC NPs are potentially promising for clinical applications. FROM THE CLINICAL EDITOR: In this paper, a galactosylated chitosan (GC), was synthesized and norcantharidin (NCTD)-associated galactosylated chitosan nanoparticles (NCTDGC NPs) were generated by coupling NCTD--an anti-hepatocarcinoma drug--and GC as carrier. Compared to chitosan nanoparticles, NCTD-GC-NPs demonstrated satisfactory compatibility with hepatoma cells and strong cytotoxicity against the cells.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Carcinoma Hepatocelular/tratamento farmacológico , Quitosana/química , Portadores de Fármacos/química , Galactose/química , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/uso terapêutico , Animais , Carcinoma Hepatocelular/diagnóstico , Linhagem Celular Tumoral , Neoplasias Hepáticas/diagnóstico , Camundongos , Nanopartículas/química
11.
J Biomed Mater Res B Appl Biomater ; 108(4): 1710-1724, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31746127

RESUMO

Cancer cells have been reported to exhibit high resistance against immune system recognition through various cell intrinsic and extrinsic mechanisms. Considerable challenges have been encountered in monotherapy with chemotherapeutics to attain the desired antitumor efficacy. In this study, a nanodelivery system was designed to incorporate doxorubicin (DOX) and programmed death-ligand 1 (PD-L1) small interfering RNA (siRNA), that is, siPD-L1. DOX and siPD-L1 were formed from a stimuli-responsive polymer with a poly-L-lysine-lipoic acid reduction-sensitive core and a tumor extracellular pH-stimulated shedding polyethylene glycol layer. The codelivery system was stable under physiological pH conditions and demonstrated enhanced cellular uptake at the tumor site. Moreover, the combined treatment of DOX and siPD-L1 exhibited improved antitumor effect in vitro and in vivo compared with either modality alone. The combination of chemotherapy and immunotherapy presented in this work through the codelivery of a chemotherapeutic agent and a gene-silencing agent (siRNA) may provide a new strategy for cancer treatment.


Assuntos
Antígeno B7-H1 , Doxorrubicina , Imunoterapia , Nanopartículas , Neoplasias/terapia , Animais , Antígeno B7-H1/química , Antígeno B7-H1/farmacocinética , Antígeno B7-H1/farmacologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/metabolismo
12.
Pharmazie ; 64(1): 26-31, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19216227

RESUMO

This work aimed to produce and develop new pH-sensitive cyclosporine A (CyA) loaded nanoparticles (CyA-NP) based on the enterically soluble copolymer Eudragit S100 and to improve the poor bioavailability of lipophilic CyA. CyA-NP and freeze-dried nanoparticles (Lac-CyA-NP, 3% lactose as cryoprotectant) were prepared using a quasi-emulsion solvent diffusion technique and freeze-drying. The encapsulation efficiency, particle size and in vitro release characteristics from the vehicle of CyA were studied individually. The bioavailability of CyA-NP and Lac-CyA-NP was evaluated in rats at a dose of 15 mg/kg as compared to Neoral. The mean particle size of CyA-NP was 44 +/- 3 nm, while the encapsulation efficiency reached 99.7%. The particle size and encapsulation efficiency of the freeze-dried formulation remained relatively stable by using 3% lactose (W/V) as a cryoprotective agent before freeze-drying and after dissolving. Significantly pH-dependent release profiles were revealed when the pH of the medium was above 6.0. The relative bioavailabilities of CyA-NP and Lac-CyA-NP were 162.1% and 130.1% compared with Neoral after oral administration at the same dosage. The results showed that the pH-sensitive CyA-loaded nanoparticles were a potential vehicle for developing a high performance CyA carrier system.


Assuntos
Ciclosporina/administração & dosagem , Ciclosporina/farmacocinética , Imunossupressores/administração & dosagem , Imunossupressores/farmacocinética , Animais , Área Sob a Curva , Disponibilidade Biológica , Química Farmacêutica , Crioprotetores/química , Ciclosporina/química , Composição de Medicamentos , Liofilização , Concentração de Íons de Hidrogênio , Imunossupressores/química , Masculino , Microscopia Eletrônica de Transmissão , Nanopartículas , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley
13.
Int J Pharm ; 566: 731-744, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31212055

RESUMO

Tumor cells avoid immunosurveillance during the tumorigenesis, metastasis and recurrence periods thanks to the overexpressed immunosuppressive molecules on their surface. For instance, the programmed cell death 1 ligand (PD-L1) binds with the T-cells' programmed cell death receptor 1 (PD-1) impairing the anti-tumor activity of the host T cells. In this study, a new reactive oxygen species (ROS) responsive nanoparticle (NP), modified with the HAIYPRH (T7) peptide, was developed for the co-delivery of siRNA-PD-L1 and doxorubicin (Dox). These NPs can block the inhibitory signal responding to T cells and enhance cytotoxicity of Dox against tumor cells. The T7 modification binds to the overexpressed transferrin receptor on tumor cells facilitating its cellular uptake. Dox rapid release is then triggered by the high tumor cells cytoplasmic concentration of ROS, leading to cell apoptosis. Our results demonstrated these NPs exhibited a T7-mediated cellular uptake and an intracellular ROS-triggered payloads release in vitro. They also suggested an improved in vivo 4T1 tumor targeting efficiency and chemoimmunotherapy. Most notably, the co-delivery system exhibited a significantly enhanced antitumor effect over Dox-only loaded NPs following prompting the proliferation of T cells by siRNA-PD-L1. In conclusion, these ROS-responsive NPs provided a promising strategy to combine siRNA-PD-L1 immunotherapy and Dox chemotherapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Antígeno B7-H1/genética , Colágeno Tipo IV/administração & dosagem , Doxorrubicina/administração & dosagem , Nanopartículas/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Linhagem Celular Tumoral , Feminino , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo , Carga Tumoral/efeitos dos fármacos
14.
Theranostics ; 9(20): 5886-5898, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534526

RESUMO

Targeting tumor angiogenesis pathway via VEGF siRNA (siVEGF) has shown great potential in treating highly malignant and metastatic non-small cell lung cancer (NSCLC). However, anti-angiogenic monotherapy lacked sufficient antitumor efficacy which suffered from malignant tumor proliferation. Therefore, the combined application of siVEGF and chemotherapeutic agents for simultaneous targeting of tumor proliferation and angiogenesis has been a research hotspot to explore a promising NSCLC therapy regimen. Methods: We designed, for the first time, a rational therapy strategy via intelligently co-delivering siVEGF and chemotherapeutics etoposide (ETO) by multi-functional nanoparticles (NPs) directed against the orthotopic NSCLC. These NPs consisted of cationic liposomes loaded with siVEGF and ETO and then coated with versatile polymer PEGylated histidine-grafted chitosan-lipoic acid (PHCL). We then comprehensively evaluated the anti-angiogenic and anti-proliferation efficiency in the in vitro tumor cell model and in bioluminescent orthotopic lung tumor bearing mice model. Results: The NPs co-delivering siVEGF and ETO exhibited tailor-made surface charge reversal features in mimicking tumor extracellular environment with improved internal tumor penetration capacity and higher cellular internalization. Furthermore, these NPs with flexible particles size triggered by intracellular acidic environment and redox environment showed pinpointed and sharp intracellular cargo release guaranteeing adequate active drug concentration in tumor cells. Enhanced VEGF gene expression silencing efficacy and improved tumor cell anti-proliferation effect were demonstrated in vitro. In addition, the PHCL layer improved the stability of these NPs in neutral environment allowing enhanced orthotopic lung tumor targeting efficiency in vivo. The combined therapy by siVEGF and ETO co-delivered NPs for orthotopic NSCLC simultaneously inhibited tumor proliferation and tumor angiogenesis resulting in more significant suppression of tumor growth and metastasis than monotherapy. Conclusion: Combined application of siVEGF and ETO by the multi-functional NPs with excellent and on-demand properties exhibited the desired antitumor effect on the orthotopic lung tumor. Our work has significant potential in promoting combined anti-angiogenesis therapy and chemotherapy regimen for clinical NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Etoposídeo/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sistemas de Liberação de Medicamentos/métodos , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
15.
Acta Biomater ; 81: 219-230, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30267887

RESUMO

To bypass the biological barriers during the drug delivery process, it is desirable to develop smart nanoparticles (NPs) with flexible physical and chemical properties. In this study, a programmed NP delivery system with a pH-triggered detachable PEG layer and a lactobionic acid (Lac)-modified reduction-responsive core was developed to address the "PEG dilemma" and provide an on-demand intracellular release of doxorubicin (DOX). The positively charged DOX-loaded lactobionic acid-chitosan-lipoic acid (DOX/LCL) NPs were prepared and coated with a negatively charged dimethylmaleic acid-PEG-chitosan (PEG-CS-DA) layer to obtain a prolonged circulation time and improve the tumor-targeting effect. After reaching the tumor tissues through a targeted delivery effect, the surface charge of the PEG-CS-DA layer was reversed from negative to positive because of the trigger by the acidic microenvironment (pH 6.8), thus leading to the detachment of the PEG layer. The exposure of positive charges and the active targeting ligand enhanced cellular uptake and facilitated penetration into tumor tissues. Subsequently, the rapid release and diffusion of DOX into the nuclei was triggered by the intracellular high concentration of glutathione, thus leading to cell apoptosis. In conclusion, these programmed pH/reduction-responsive NPs provide a promising strategy for the delivery of antitumor agents in vivo. STATEMENT OF SIGNIFICANCE: In this study, novel programmed pH/reduction-responsive NPs were developed for the delivery of DOX in vivo. These NPs were coated with a negatively charged PEG layer to improve the serum stability and tumor target effect. The PEG layer detached because of the trigger by tumor acidic microenvironment (pH 6.8), thus leading to the exposure of positive charges and the active targeting ligand, which enhanced cellular uptake and facilitated penetration into tumor tissues. Subsequently, the rapid release of DOX was triggered by the intracellular high concentration of glutathione, thereby resulting in enhanced cytotoxicity. These programmed pH/reduction-responsive NPs provide a promising strategy for the delivery of antitumor agents in vivo.


Assuntos
Antineoplásicos , Doxorrubicina , Portadores de Fármacos , Nanopartículas , Neoplasias , Microambiente Tumoral , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
16.
Int J Nanomedicine ; 12: 3375-3393, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28490877

RESUMO

Multidrug resistance (MDR) is a major obstacle for the clinical therapy of malignant human cancers. The discovery of RNA interference provides efficient gene silencing within tumor cells for reversing MDR. In this study, a new "binary polymer" low-density lipoprotein-N-succinyl chitosan-cystamine-urocanic acid (LDL-NSC-SS-UA) with dual pH/redox sensitivity and targeting effect was synthesized for the co-delivery of breast cancer resistance protein small interfering RNA (siRNA) and paclitaxel (PTX). In vivo, the co-delivering micelles can accumulate in tumor tissue via the enhanced permeability and retention effect and the specific recognition and combination of LDL and LDL receptor, which is overexpressed on the surface of tumor cell membranes. The siRNA-PTX-loaded micelles inhibited gene and drug release under physiological conditions while promoting fast release in an acid microenvironment or in the presence of glutathione. The micelles escaped from the lysosome through the proton sponge effect. Additionally, the micelles exhibited superior antitumor activity and downregulated the protein and mRNA expression levels of breast cancer resistance protein in MCF-7/Taxol cells. The biodistribution and antitumor studies proved that the siRNA-PTX-loaded micelles possessed prolonged circulation time with a remarkable tumor-targeting effect and effectively inhibited tumor growth. Therefore, the novel dual pH/redox-sensitive polymers co-delivering siRNA and PTX with excellent biocompatibility and effective reversal of MDR demonstrate a considerable potential in cancer therapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Paclitaxel/administração & dosagem , Polímeros/química , RNA Interferente Pequeno/administração & dosagem , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Lipoproteínas LDL , Células MCF-7/efeitos dos fármacos , Camundongos Nus , Micelas , Oxirredução , Paclitaxel/química , Paclitaxel/farmacocinética , Polímeros/administração & dosagem , Interferência de RNA , RNA Interferente Pequeno/genética , Distribuição Tecidual
17.
Int J Nanomedicine ; 12: 4241-4256, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28652730

RESUMO

Physicochemical properties, including particle size, zeta potential, and drug release behavior, affect targeting efficiency, cellular uptake, and antitumor effect of nanocarriers in a formulated drug-delivery system. In this study, a novel stepwise pH-responsive nanodrug delivery system was developed to efficiently deliver and significantly promote the therapeutic effect of doxorubicin (DOX). The system comprised dimethylmaleic acid-chitosan-urocanic acid and elicited stepwise responses to extracellular and intracellular pH. The nanoparticles (NPs), which possessed negative surface charge under physiological conditions and an appropriate nanosize, exhibited advantageous stability during blood circulation and enhanced accumulation in tumor sites via enhanced permeability and retention effect. The tumor cellular uptake of DOX-loaded NPs was significantly promoted by the first-step pH response, wherein surface charge reversion of NPs from negative to positive was triggered by the slightly acidic tumor extracellular environment. After internalization into tumor cells, the second-step pH response in endo/lysosome acidic environment elicited the on-demand intracellular release of DOX from NPs, thereby increasing cytotoxicity against tumor cells. Furthermore, stepwise pH-responsive NPs showed enhanced antiproliferation effect and reduced systemic side effect in vivo. Hence, the stepwise pH-responsive NPs provide a promising strategy for efficient delivery of antitumor agents.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Quitosana/química , Doxorrubicina/química , Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Liberação Controlada de Fármacos , Feminino , Concentração de Íons de Hidrogênio , Malonatos/química , Camundongos Endogâmicos BALB C , Nanopartículas/química , Tamanho da Partícula , Distribuição Tecidual , Ácido Urocânico/química
18.
J Control Release ; 268: 198-211, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29061511

RESUMO

Malignant proliferation and metastasis in non-small cell lung carcinoma (NSCLC) are great challenges for effective clinical treatment through conventional chemotherapy. The combinational therapy strategy of RNA interfering (RNAi) technology and chemotherapeutic agents have been reported to be promising for effective cancer therapy. In this study, based on multifunctional nanoparticles (NPs), the simultaneous delivery of etoposide (ETP) and anti-Enhancer of Zeste Homologue 2 (EZH2) siRNA for the effective treatment of orthotopic lung tumor was achieved. The NPs exhibited pH/redox dual sensitivity verified by particle size changes, morphological changes, and in vitro release of drugs. Confocal microscopy analysis confirmed that the NPs exhibited endosomal escape property and on-demand intracellular drug release behavior, which can protect siRNA from degradation and facilitate the chemotherapeutic effect respectively. In vitro tumor cell motility study demonstrated that EZH2 siRNA loaded in NPs can decrease the migration and invasion capabilities of tumor cells by downregulating the expression of EZH2 mRNA and protein. In particular, an antiproliferation study revealed that the co-delivery of siRNA and ETP in the multifunctional NPs can induce a synergistic therapeutic effect on NSCLC. In vivo targeting evaluation showed that cRGDyC-PEG modification on NPs exhibited a low distribution in normal organs and an obvious accumulation in orthotopic lung tumor. Furthermore, targeted NPs co-delivering siRNA and ETP showed superior inhibition on tumor growth and metastasis and produced minimal systemic toxicity. These findings indicated that multifunctional NPs can be utilized as a co-delivery system, and that the combination of EZH2 siRNA and ETP can effectively treat NSCLC.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Etoposídeo/administração & dosagem , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Células A549 , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Terapia Combinada , Liberação Controlada de Fármacos , Etoposídeo/química , Feminino , Humanos , Camundongos Nus , Nanopartículas/química , Polímeros/administração & dosagem , Polímeros/química , RNA Interferente Pequeno/química
19.
J Biomed Mater Res B Appl Biomater ; 105(7): 2093-2106, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27405391

RESUMO

P-glycoprotein (P-gp) plays an importantrole in multidrug resistance (MDR), proved to be one of the major obstacles in cancer chemotherapy. Cationic polymers could specifically deliver siRNA to tumor cells and thus reverse MDR by the downregulation of P-gp. In this study, a triblock copolymer micelle was prepared based on the polymer of N-succinyl-chitosan-poly-l-lysine-palmitic acid (NSC-PLL-PA) to deliver siRNA-P-gp (siRNA-micelle) or doxorubicin (Dox-micelle). The resulting micelle exhibited an efficient binding ability for siRNA and high encapsulation efficiency for Dox, with an average particle size of ∼170 nm. siRNA-micelle and Dox-micellewere instable at low pH, thereby enhancing tumor accumulation and intracellular release of the encapsulated siRNA and Dox. siRNA-micelle micelles could enhance the knockdown efficacy of siRNA by improving the transfection efficiency, downregulating P-gp expression, and passing the drug efflux transporters, thereby improving the therapeutic effects of Dox-micelle. However, P-gp could transfer from HepG2/ADM to HepG2 cells independent of the expression of mdr1, and the acquired resistance could permit tumor cells to survive and develop intrinsic P-gp-mediated resistance, thereby limiting the desired efficiency of chemotherapeutics. This study demonstrated the effectiveness of siRNA-micelle for tumor-targeted delivery, MDR reversal, and provided an effective strategy for the treatment of cancers that develop MDR. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2093-2106, 2017.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Micelas , Proteínas de Neoplasias , Neoplasias , RNA Interferente Pequeno , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Células Hep G2 , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
20.
J Biomed Mater Res B Appl Biomater ; 105(5): 1114-1125, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27008163

RESUMO

The development of effective and stable carriers of small interfering RNA (siRNA) is important for treating cancer with multidrug resistance (MDR). We developed a new gene and drug co-delivery system and checked its characteristics. Low-density lipoprotein (LDL) was coupled with N-succinyl chitosan (NSC) Lipoic acid (LA) micelles and co-delivered MDR1 siRNA and paclitaxel (PTX-siRNA/LDL-NSC-LA) to enhance antitumor effects by silencing the MDR gene of tumors (Li et al., Adv Mater 2014;26:8217-8224). In our study, we developed a new type of containing paclitaxel-loaded micelles and siRNA-loaded LDL nanoparticle. This "binary polymer" is pH and reduction dual-sensitive core-crosslinked micelles. PTX-siRNA/LDL-NSC-LA had an average particle size of (171.6 ± 6.42) nm, entrapment efficiency of (93.92 ± 1.06) %, and drug-loading amount of (12.35% ± 0.87) %. In vitro, MCF-7 cells, high expressed LDL receptor, were more sensitive to this delivery system than to taxol® and cell activity was inhibited significantly. Fluorescence microscopy showed that PTX-siRNA/LDL-NSC-LA was uptaken very conveniently and played a key role in antitumor activity. PTX-siRNA/LDL-NSC-LA protected the siRNA from degradation by macrophage phagocytosis and evidently down-regulated the level of mdr1 mRNA as well as the expression of P-gp. We tested the target ability of PTX-siRNA/LDL-NSC-LA in vivo in tumor-bearing nude mice. Results showed that this system could directly deliver siRNA and PTX to cancer cells. Thus, new co-delivering siRNA and antitumor drugs should be explored for solving MDR in cancer. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1114-1125, 2017.


Assuntos
Quitosana , Técnicas de Transferência de Genes , Lipoproteínas LDL , Micelas , Proteínas de Neoplasias , Neoplasias Experimentais , Paclitaxel/farmacologia , RNA Interferente Pequeno , Ácido Tióctico , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Quitosana/química , Quitosana/farmacologia , Feminino , Humanos , Lipoproteínas LDL/química , Lipoproteínas LDL/farmacologia , Células MCF-7 , Camundongos , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Ácido Tióctico/química , Ácido Tióctico/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA