RESUMO
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. However, challenges in early diagnosis, high risk of liver metastasis, and lack of effective targeted therapy lead to poor prognosis and high mortality of UM. Therefore, generating an effective molecular tool for UM diagnosis and targeted treatment is of great significance. In this study, a UM-specific DNA aptamer, PZ-1, was successfully developed, which could specifically distinguish molecular differences between UM cells and noncancerous cells with nanomolar-range affinity and presented excellent recognition ability for UM in vivo and clinical UM tissues. Subsequently, the binding target of PZ-1 on UM cells was identified as JUP (junction plakoglobin) protein, which held great potential as a biomarker and therapeutic target for UM. Meanwhile, the strong stability and internalization capacity of PZ-1 were also determined, and a UM-specific aptamer-guided "nanoship" was engineered to load and selectively release doxorubicin (Dox) to targeted UM cells, with lower toxicity to nontumor cells. Taken together, the UM-specific aptamer PZ-1 could serve as a molecular tool to discover the potential biomarker for UM and to achieve the targeted therapy of UM.
Assuntos
Doxorrubicina , Melanoma , Humanos , Linhagem Celular Tumoral , Biomarcadores , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Melanoma/diagnóstico , Melanoma/tratamento farmacológico , Melanoma/genéticaRESUMO
The optic nerve (ON) can get compressed in different diseases. However, the pathological and functional changes occurring in the compressed ON over time under constant compression are still unclear. In the present study, we implanted an artificial tube around the optic nerve of a rabbit to primarily create a clinically relevant persistent compressive optic nerve axonopathy (PCOA). Due to the protuberance on the inner ring of the tube, steady and persistent compressions were maintained. In this model, we investigated the thickness of ganglion cell complex (GCC), retinal ganglion cell (RGC) density, axon density of optic nerve, flash visual evoked potential (FVEP), and anterograde axonal transport at various times in four different groups viz. the no comp, 1/2 comp, 3/4 comp, and crush groups. The GCC thickness, RGC density, and axon density of ON were hierarchically and significantly decreased in 1/2 comp, 3/4 comp, and crush groups. Compared to no comp eyes, the P2 amplitude ratio of FVEP was significantly decreased in 3/4 comp but not in 1/2 comp eyes. Only a portion of the optic nerve lost the ability of anterograde axonal transport in the 1/2 comp group. However, it was evident at 2-wpo and more prominent at 4-wpo in 3/4 comp eyes. This study reveals that the compression only induces the homolateral ON axons impairment and the proportion of the affected axons maintains the same for mild compression for at least three months. Furthermore, an underlying threshold effect highlights that mild compression does not require urgent surgery, while the severe compression warrants immediate surgical intervention.
Assuntos
Doenças do Nervo Óptico , Traumatismos do Nervo Óptico , Animais , Coelhos , Potenciais Evocados Visuais , Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Doenças do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/patologia , Axônios/patologia , Compressão Nervosa , Modelos Animais de DoençasRESUMO
AAV vector-mediated gene therapy has been proposed as a feasible strategy for several eye diseases. However, AAV antibodies in the serum prior to treatment hinder the transduction efficiency and thus the therapeutic effect. Therefore, it is necessary to evaluate AAV antibodies in the serum before gene therapy. As large animals, goats are more closely related to humans than rodents and more economically available than nonhuman primates. Here, we first evaluated the AAV2 antibody serum level in rhesus monkeys before AAV injection. Then, we optimized a cell-based neutralizing antibody assay for detecting AAV antibodies in the serum of Saanen goats and evaluated the consistency of the cell-based neutralizing antibody assay and ELISA for goat serum antibody evaluation. The cell-based neutralizing antibody assay showed that the percentage of macaques with low antibody levels was 42.86%; however, there were no macaques with low antibody levels when the serum was evaluated by ELISA. The proportion of goats with low antibody levels was 56.67% according to the neutralizing antibody assay and 33. 33% according to the ELISA, and McNemar's test showed that the results of the two assays were not significantly different (P = 0.754), but that their consistency is poor (Kappa = 0.286, P = 0.114). Moreover, longitudinal evaluation of serum antibodies before and after intravitreal injection of AAV2 in goats revealed that the level of AAV antibodies increased and transduction inhibition subsequently increased, as reported in humans, indicating that transduction inhibition should be taken into account at different stages of gene therapy. In summary, starting with an evaluation of monkey serum antibodies, we optimized a detection method of goat serum antibodies, providing an alternative large animal model for gene therapy, and our serum antibody measurement method may be applied to other large animals.
Assuntos
Anticorpos Neutralizantes , Cabras , Humanos , Animais , Cabras/genética , Terapia Genética/métodos , Injeções Intravítreas , Macaca mulatta , Dependovirus/genética , Vetores Genéticos , Anticorpos Antivirais/genéticaRESUMO
Large animal model of optic nerve (ON) injury is an essential tool for translational medicine. Perfusion fixation with paraformaldehyde is mainly used for preparing the semi-thin (1-2 µm thick) and ultra-thin (<0.5 µm thick) sections of the ON tissues. However, this conventional fixation technique in large animals needs a large volume of fixatives, which increases the risk of toxic exposure and is environmentally unfriendly. Additionally, fixed residual ON cannot be used for other tests that require fresh tissue samples. Although conventional immersion fixation is feasible for preparing a semi-thin section of the ON in small animals (0.2-0.6 mm in diameter), it faces technical challenges when fixing the ON of large animals (3 mm in diameters), as increased diameter limits the permeability of the fixatives into deeper tissue. Therefore, we optimized the immersion-fixation method to obtain high-quality, large-scale, semi-thin, and ultra-thin sections for the ON of goat and rhesus macaques. Using this optimized technique, the ON microstructure was well preserved throughout the entire area of 1.5*1.5 square millimeters, allowing confident quantification of axon density/diameter on semi-thin section and identification of specific organelles and glial cells on ultra-thin sections. Furthermore, the optimized technique is a quick, simple, and environmentally friendly fixation method. Notably, the ON regions of large animals with or without an intact neurovascular system can be prepared for light and electron microscopy. In contrast, the residual unfixed ON from the same animal can be further utilized for experiments such as tissue culture and biomolecular tests.
Assuntos
Técnicas Histológicas , Nervo Óptico , Animais , Fixadores , Macaca mulatta , Perfusão/métodos , Fixação de Tecidos/métodosRESUMO
INTRODUCTION: Veillonella, known as early colonizers in oral biofilms, take part in some infections in human. Biofilm refers to complex, sessile communities of microbes, which function as strong barriers for bacteria to survive. Biofilm matrixes surrounding bacteria enable them to withstand harsh conditions, protect against immune cells, etc., and also make them resistant to antimicrobial treatments. Thus, the knowledge of antibiotic susceptibility and biofilm formation of Veillonella will shed light on their resistance mechanism. MATERIALS AND METHOD: Their morphology was observed by scanning electron microscopy (SEM). According to the performance standards for antibiotic susceptibility testing of the Clinical & Laboratory Standards Institute, the Agar dilution method was used to study the susceptibility of Veillonella strains to eight antibiotics (ampicillin, piperacillin-tazobactam, cefoxitin, tetracycline, moxifloxacin, clindamycin, metronidazole, and vancomycin). In addition, we applied the crystal violet staining method to reveal the processes of biofilm formation of these Veillonella strains. RESULTS: V. rogosae, V. nakazawae, and V. parvula were isolated from oral cavities of healthy adults and V. ratti was isolated from dairy goat droppings. Observations by scanning electron microscopy showed that Veillonella were spherical and arranged in single or short chains. The diameter of a single cell was about 0.3-0.5 µm. The Minimum Inhibitory Concentrations (MICs) of the antibiotics were determined and the results showed that these four strains were all sensitive to cefoxitin, tetracycline, moxifloxacin, clindamycin and metronidazole. Among the four strains, V. ratti was resistant to piperacillin-tazobactam, and V. rogosae and V. nakazawae were resistant to ampicillin. The vancomycin susceptibility of the four Veillonella strains varied greatly. The MICs of vancomycin against V. rogosae and V. ratti were greater than 256 µg/mL but the MICs of vancomycin against V. nakazawae and V. parvula were less than 2 µg/mL. V. parvula had significantly higher biofilm-forming ability than the other three strains (p < 0.05) and V. nakazawae had the weakest biofilm-forming ability. CONCLUSION: In this study, V. rogosae, V. nakazawae, V. parvula and V. ratti were isolated and identified. The four strains of Veillonella showed differences in MIC values for different antibiotics and biofilm-forming ability.
Assuntos
Vancomicina , Veillonella , Humanos , Vancomicina/farmacologia , Cefoxitina , Clindamicina/farmacologia , Moxifloxacina , Metronidazol , Biofilmes , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Ampicilina/farmacologia , Tetraciclinas , Piperacilina , TazobactamRESUMO
Large animal model of optic nerve crush (ONC) plays an important role in translating novel therapeutic strategies developed in rodent model to clinical application. Due to the poor accessibility of the optic nerve (ON) in humans and large animals, lateral orbitotomy is needed to expose the retrobulbar ON. This study was to explore the effects of ONC and ON exposure with lateral orbitotomy (sham surgery) on the outer retinal function and structure in goats by using standard flash electroretinogram (FERG) and spectral-domain optical coherence tomography (SD-OCT). We found that ONC led to a transient reduction in FERG amplitudes at 1 week post injury (wpi), which recovered gradually over 2 months afterwards. Sham surgery alone also caused a similar pattern of amplitude reduction in FERG, although not as significantly as ONC did. Transient outer retinal thickening following ONC occurred at 4 wpi (when progressive thinning of the ganglion cell complex began), peaked at 8 wpi, then recovered gradually at 12 wpi. In contrast, outer retinal thickness remained unchanged statistically 3 months after sham surgery. Fundus fluorescein angiography showed that neither ONC nor ON exposure with lateral orbitotomy significantly caused any significant delay or absence of central retinal vascular filling. In summary, ONC with lateral orbitotomy affects outer retinal function and structure transiently.
Assuntos
Traumatismos do Nervo Óptico/fisiopatologia , Nervo Óptico/patologia , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Animais , Modelos Animais de Doenças , Eletrorretinografia , Angiofluoresceinografia/métodos , Fundo de Olho , Cabras , Masculino , Procedimentos Cirúrgicos Oftalmológicos/efeitos adversos , Nervo Óptico/fisiopatologia , Traumatismos do Nervo Óptico/diagnóstico , Órbita/cirurgia , Células Ganglionares da Retina , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia , Tomografia de Coerência Óptica/métodosRESUMO
Multiple lines of investigation have demonstrated that inflammation plays significant roles in etiology of age-related macular degeneration (AMD). Although interventional trials in AMD therapy targeting inflammatory pathways have been conducted, they have not yet been successful and a detailed understanding as to why some have failed is still elusive. One limitation is the relative dearth of information on how immune cells interact with retinal cells to generate AMD phenotypes at each disease stage. Here, we summarize current research evidence and hypotheses regarding potential pathogenic roles of innate immune cells in the eye, which include resident retinal microglia, macrophages derived from infiltrating systemic monocytes, and macrophages resident in the choroid. We relate recent findings regarding the physiology, function, and cellular interactions involving innate immune cells in the retina and choroid to AMD-related processes, including: (1) drusen formation and regression, (2) the onset and spread of degeneration in late atrophic AMD, and (3) the initiation, growth, and exudation of neovascular vessels in late "wet" AMD. Understanding how innate immune cells contribute to specific AMD phenotypes can assist in generating a comprehensive view on the inflammatory etiology of AMD and aid in identifying anti-inflammatory therapeutic strategies and selecting appropriate clinical outcomes for the planned interventions.
Assuntos
Atrofia Geográfica , Degeneração Macular , Corioide , Humanos , Imunidade Inata , RetinaRESUMO
Large animal models of optic nerve injury are essential for translating novel findings into effective therapies due to their similarity to humans in many respects. However, most current tests evaluating the integrity of retinal ganglion cells (RGCs) and optic nerve (ON) are based on rodent animal models. We aimed to evaluate and optimize the in vivo methods to assess RGCs and ON's function and structure in large animals in terms of reproducibility, simplicity and sensitivity. Both goats and rhesus macaques were employed in this study. By using goats, we found anesthesia with isoflurane or xylazine resulted in different effects on reproducibility of flash visual evoked potential (FVEP) and pattern electroretinogram (PERG). FVEP with the large-Ganzfeld stimulator was significantly more stable than that with mini-Ganzfeld stimulator. PERG with simultaneous binocular stimulation, with superior simplicity over separate monocular stimulation, was appliable in goats due to undetectable interocular crosstalk of PERG signals. After ON crush in goats, some FVEP components, PERG, OCT and PLR demonstrated significant changes, in line with the histological study. By using rhesus macaque, we found the implicit time of PVEP, FVEP and PERG were significantly more reproducible than amplitudes, and OCT and PLR demonstrated small intersession variation. In summary, we established an optimized system to evaluate integrity of RGCs and ON in large animals in vivo, facilitating usage of large animal models of optic nerve diseases.
Assuntos
Eletrorretinografia/métodos , Traumatismos do Nervo Óptico/diagnóstico , Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica/métodos , Animais , Modelos Animais de Doenças , Cabras , Macaca mulatta , Masculino , Traumatismos do Nervo Óptico/fisiopatologia , Reprodutibilidade dos TestesRESUMO
Photoreceptor degeneration is a cause of irreversible vision loss in incurable blinding retinal diseases including retinitis pigmentosa (RP) and atrophic age-related macular degeneration. We found in two separate mouse models of photoreceptor degeneration that tamoxifen, a selective estrogen receptor modulator and a drug previously linked with retinal toxicity, paradoxically provided potent neuroprotective effects. In a light-induced degeneration model, tamoxifen prevented onset of photoreceptor apoptosis and atrophy and maintained near-normal levels of electroretinographic responses. Rescue effects were correlated with decreased microglial activation and inflammatory cytokine production in the retina in vivo and a reduction of microglia-mediated toxicity to photoreceptors in vitro, indicating a microglia-mediated mechanism of rescue. Tamoxifen also rescued degeneration in a genetic (Pde6brd10) model of RP, significantly improving retinal structure, electrophysiological responses, and visual behavior. These prominent neuroprotective effects warrant the consideration of tamoxifen as a drug suitable for being repurposed to treat photoreceptor degenerative disease.SIGNIFICANCE STATEMENT Photoreceptor degeneration is a cause of irreversible blindness in a number of retinal diseases such as retinitis pigmentosa (RP) and atrophic age-related macular degeneration. Tamoxifen, a selective estrogen receptor modulator approved for the treatment of breast cancer and previously linked to a low incidence of retinal toxicity, was unexpectedly found to exert marked protective effects against photoreceptor degeneration. Structural and functional protective effects were found for an acute model of light-induced photoreceptor injury and for a genetic model for RP. The mechanism of protection involved the modulation of microglial activation and the production of inflammatory cytokines, highlighting the role of inflammatory mechanisms in photoreceptor degeneration. Tamoxifen may be suitable for clinical study as a potential treatment for diseases involving photoreceptor degeneration.
Assuntos
Regeneração Nervosa/fisiologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/fisiopatologia , Tamoxifeno/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração Nervosa/efeitos da radiação , Fármacos Neuroprotetores/administração & dosagem , Células Fotorreceptoras de Vertebrados/fisiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Degeneração Retiniana/patologia , Resultado do TratamentoRESUMO
PURPOSE: To assess macular microstructure in eyes with tilted disk syndrome (TDS) and determine the relationship between TDS foveal morphology and visual function. METHODS: Twenty-six TDS eyes from 19 children (aged 5â¼15 years) with a spherical equivalent refraction (SER) of -3.1 ± 1.3 diopter (D) and 28 control eyes from 14 children (aged 7â¼12 years) with a SER of -3.0 ± 0.7 D were recruited. Horizontal and vertical optical coherence tomography scans through the fovea produced images that were segmented into eight intraretinal layers. Thicknesses of the total retina and each layer were measured at the foveal center and 12 other macular locations: 500 µm, 1,000 µm, and 1,500 µm along the horizontal and vertical meridians. The relationships between TDS best correct visual acuity (BCVA) and the presence of photoreceptor inner/outer segment (IS/OS) junction line, IS/OS foveal bulge, and cone outer segment tip (COST) line were evaluated. RESULTS: The thickness of TDS central fovea, 218.94 ± 22.20 µm, was not significantly different from controls. The total retinal thickness in TDS eyes was thinner than controls at all peripheral locations (P < 0.05) except at 500 µm and 1,000 µm superiorly, and 1,500 µm temporally. Tilted disk syndrome intraretinal layer thicknesses in the nasal and inferior regions varied significantly from controls (P < 0.05). Only 80.7% and 23.1% of TDS eyes had a normal foveal bulge and continuous COST line, respectively, compared with 100% and 96.4% of controls. The BCVA of TDS eyes was similar whether or not the foveal bulge or COST line was abnormal. CONCLUSION: Differences in intraretinal layer thickness may be correlated with defective vision.
Assuntos
Macula Lutea/patologia , Disco Óptico/anormalidades , Doenças Retinianas/patologia , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Fóvea Central/patologia , Humanos , Masculino , Células Fotorreceptoras Retinianas Cones/patologia , Doenças Retinianas/etiologia , Segmento Interno das Células Fotorreceptoras da Retina/patologia , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Tomografia de Coerência Óptica , Acuidade VisualRESUMO
Retinitis pigmentosa (RP), a disease characterized by the progressive degeneration of mutation-bearing photoreceptors, is a significant cause of incurable blindness in the young worldwide. Recent studies have found that activated retinal microglia contribute to photoreceptor demise via phagocytosis and proinflammatory factor production, however mechanisms regulating these contributions are not well-defined. In this study, we investigate the role of CX3CR1, a microglia-specific receptor, in regulating microglia-mediated degeneration using the well-established rd10 mouse model of RP. We found that in CX3CR1-deficient (CX3CR1(GFP/GFP) ) rd10 mice microglial infiltration into the photoreceptor layer was significantly augmented and associated with accelerated photoreceptor apoptosis and atrophy compared with CX3CR1-sufficient (CX3CR1(GFP/+) ) rd10 littermates. CX3CR1-deficient microglia demonstrated increased phagocytosis as evidenced by (1) having increased numbers of phagosomes in vivo, (2) an increased rate of phagocytosis of fluorescent beads and photoreceptor cellular debris in vitro, and (3) increased photoreceptor phagocytosis dynamics on live cell imaging in retinal explants, indicating that CX3CR1 signaling in microglia regulates the phagocytic clearance of at-risk photoreceptors. We also found that CX3CR1 deficiency in retinal microglia was associated with increased expression of inflammatory cytokines and microglial activation markers. Significantly, increasing CX3CL1-CX3CR1 signaling in the rd10 retina via exogenous intravitreal delivery of recombinant CX3CL1 was effective in (1) decreasing microglial infiltration, phagocytosis and activation, and (2) improving structural and functional features of photoreceptor degeneration. These results indicate that CX3CL1-CX3CR1 signaling is a molecular mechanism capable of modulating microglial-mediated degeneration and represents a potential molecular target in therapeutic approaches to RP. GLIA 2016;64:1479-1491.
Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Microglia/metabolismo , Fagocitose/fisiologia , Células Fotorreceptoras/metabolismo , Retinose Pigmentar/metabolismo , Animais , Modelos Animais de Doenças , Macrófagos/metabolismo , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Receptores de Quimiocinas/metabolismo , Retina/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Purpose: To evaluate the effectiveness of surgical reversal of experimental optic nerve compression in treating persistent compressive optic neuropathy and to explore the relationship between surgical outcomes and the timing of the procedure. Methods: Surgical reversal procedures (decompression surgery) were conducted at five time intervals: 1, 3, and 7 days and 2 and 3 weeks following optic nerve compression in a rabbit model. The groups were labeled as DC-1d, DC-3d, DC-7d, DC-2w, and DC-3w, respectively. The study investigated changes in ganglion cell complex (GCC) thickness using spectral-domain optical coherence tomography and the percentage of surviving retinal ganglion cells (RGCs) through immunofluorescence staining and optic nerve axons stained with p-phenylenediamine at 4 weeks after decompression. Additionally, the area distribution of surviving axons was analyzed. Results: The decline in GCC thickness was halted following decompression. The remaining thickness of the GCC in group DC-1d was found to be statistically significantly higher at 2, 3, and 4 weeks postonset compared to the no-decompression group. Similarly, GCC thickness in group DC-3d was significantly higher at 3 and 4 weeks postonset. The percentage of surviving RGCs and axons at 4 weeks postonset exhibited an exponential correlation with the onset time of decompression, with R2 values of 0.72 and 0.78, respectively. The surviving axon area declined following delayed decompression. Conclusions: Persistent substantial compression on the optic nerve leads to exponential degeneration of the optic nerve, initially affecting larger optic nerve fibers. Early intervention aimed at relieving the compression on the optic nerve may offer potential benefits in mitigating the degenerative effects and conserving visual function.
Assuntos
Descompressão Cirúrgica , Modelos Animais de Doenças , Síndromes de Compressão Nervosa , Fibras Nervosas , Doenças do Nervo Óptico , Nervo Óptico , Células Ganglionares da Retina , Tomografia de Coerência Óptica , Animais , Coelhos , Células Ganglionares da Retina/patologia , Descompressão Cirúrgica/métodos , Fibras Nervosas/patologia , Doenças do Nervo Óptico/cirurgia , Doenças do Nervo Óptico/etiologia , Síndromes de Compressão Nervosa/cirurgia , Síndromes de Compressão Nervosa/etiologia , Nervo Óptico/cirurgia , Nervo Óptico/patologia , Axônios/patologia , Masculino , Degeneração Neural/cirurgia , Degeneração Neural/patologiaRESUMO
Aim: We aimed to investigate the short-term efficacy and safety of laparoscopic pyeloplasty for treating newborns with severe hydronephrosis due to ureteropelvic junction obstruction (UPJO). Methods: A retrospective analysis was performed on 16 newborn patients with severe neonatal hydronephrosis who underwent laparoscopic pyeloplasty at our hospital from January 2021 to November 2022. All patients were regularly followed up. Laparoscopic pyeloplasty with double J stent placement was performed after the presence of severe hydronephrosis was confirmed. Results: Among the 16 pediatric patients (13 males, 3 females), the left side was affected in 13 cases and the right side in 3. The average age at surgery was 9.50 (8.50-12.00) days, with an average weight of 3.30 ± 0.95â kg. Laparoscopic pyeloplasty was performed in all cases without the need for open conversion. The mean surgery duration was 292.06 ± 73.60â min, with minimal blood loss (2.50, 2.00-5.00â ml). Postoperative hospital stays averaged 13.44 ± 4.70 days. No anastomotic leakage occurred, and follow-ups at 1, 3, 6, and 12 months showed no stent displacement, except for one case where the stent was removed at 1 month, and the others at 3 months. There were no cases of worsened hydronephrosis, except for one with renal atrophy at the 6-month follow-up. Changes in renal pelvis anteroposterior diameter exhibited a time effect (F = 49.281, P < 0.001), with significant differences at 1, 3, 6, and 12 months postoperatively compared to preoperative values (P < 0.05). Notably, differences were observed between 6 and 3 months, as well as between 12 and 3 months postoperatively (P < 0.05). Similarly, renal parenchymal thickness changes showed a time effect Pediatric urology, Guangdong Women and Children Hospital, Guangzhou, China (F = 49.281, P < 0.001), with significant differences at 1, 3, 6, and 12 months postoperatively compared to preoperative values (P < 0.05). Significant differences were also noted between 6 and 1 month, as well as between 12 and 1 month postoperatively (P < 0.05). There was one case of urinary tract infection after surgery, and no case of recurrence was observed. Conclusion: Severe neonatal hydronephrosis must be treated promptly. Laparoscopic pyeloplasty is a safe and feasible treatment with minimal complications for newborn patients with severe hydronephrosis due to UPJO.
RESUMO
The case of penetrating injury of the kidney caused by a foreign body mistakenly swallowing through the duodenum is rare. A 22-year-old male patient found that a strip of the foreign body penetrated the descending duodenum - the lower pole of the right kidney through an abdominal CT examination. After Multi-Disciplinary treatment, the patient underwent extracorporeal ultrasound-assisted endoscopic foreign body removal and hemostatic clamp suture. Extracorporeal ultrasound monitoring and intravenous pyelography showed that there was no leakage of contrast medium around the right kidney. No hematuria and urinary tract infection were found during the follow-up.
RESUMO
Visual Evoked Potential (VEP) is an electrical signal recorded from the visual cortex in response to light stimulation. It can be used as an in vivo method to objectively access the functional integrity of the retinogeniculocortical pathway. Here we describe the methods to perform flash VEP (FVEP) recording in rodents and goat and pattern VEP (PVEP) recording in rhesus macaque.
Assuntos
Células Ganglionares da Retina , Córtex Visual , Animais , Potenciais Evocados Visuais , Macaca mulatta , Córtex Visual/fisiologia , EletricidadeRESUMO
BACKGROUND: The non-human primate (NHP) model is ideal for pre-clinical testing of novel therapies for human retinal diseases due to its similarity to the human visual system. However, intra-ocular delivery of gene therapy or cell transplantation to the retina gets hampered by the sticky vitreous body and poorly permeable inner limiting membrane (ILM) in primates. Although vitrectomy and ILM peeling are commonly performed in patients, many pitfalls exist in carrying out these procedures in the rhesus macaque, which have not been reported previously. METHODS: We summarised common surgical pitfalls after performing vitrectomy and ILM peeling in four eyes of two rhesus macaques (one male and one female). We provided corresponding hands-on technical tips based on our surgical experience and literature search. Orbital CT scans were compared between adult rhesus macaques and humans. High-resolution surgical videos were recorded to demonstrate each critical surgical step. RESULTS: Due to size difference, poor post-operative compliance, and high-standard requirements of a controlled experiment, there were eleven common surgical pitfalls during vitrectomy and ILM peeling in rhesus macaque. Falling into these pitfalls may produce discomfort, add fatigue, cause surgical complications, or even lead to the exclusion of the NHP from an experimental group. CONCLUSION: Recognition and circumvention of these pitfalls during vitrectomy and ILM peeling in NHP are essential. By focusing on these surgical pitfalls, we can better carry out preclinical tests of novel therapies for retinal diseases in the NHP model.
Assuntos
Membrana Epirretiniana , Doenças Retinianas , Perfurações Retinianas , Adulto , Animais , Humanos , Masculino , Feminino , Macaca mulatta , Vitrectomia/métodos , Membrana Epirretiniana/cirurgia , Perfurações Retinianas/cirurgia , Retina/cirurgia , Doenças Retinianas/cirurgia , Membrana Basal/cirurgia , Estudos Retrospectivos , Tomografia de Coerência ÓpticaRESUMO
Rationale: Müller glia (MG) play a key role in maintaining homeostasis of the retinal microenvironment. In zebrafish, MG reprogram into retinal progenitors and repair the injured retina, while this MG regenerative capability is suppressed in mammals. It has been revealed that microglia in zebrafish contribute to MG reprogramming, whereas those in mammals are over-activated during retinal injury or degeneration, causing chronic inflammation, acceleration of photoreceptor apoptosis, and gliosis of MG. Therefore, how to modulate the phenotype of microglia to enhance MG reprogramming rather than gliosis is critical. Methods: PLX3397, a colony-stimulating factor 1 receptor inhibitor, was applied to deplete microglia in the retinas of retinal degeneration 10 (rd10) mice, and withdrawal of PLX3397 was used to induce the repopulated microglia (Rep-MiG). The protective roles of the Rep-MiG on the degenerative retina were assessed using a light/dark transition test, and scotopic electroretinogram recordings. Immunofluorescence, western blot, transcriptomic sequencing, and bioinformatics analysis were performed to investigate the effects and mechanisms of microglia on MG reprogramming. Results: Following PLX3397 withdrawal, Rep-MiG replenished the entire retina with a ramified morphology and significantly improved the retinal outer nuclear layer structure, the electroretinography response, and the visual behavior of rd10 mice. Coincidentally, MG were activated, de-differentiated, and showed properties of retina progenitors in a spatial correlation with Rep-MiG. Morphological and transcriptomic analyses revealed Rep-MiG significantly enhanced protease inhibitor activity and suppressed extracellular matrix (ECM) levels during retinal degeneration. Conclusions: It suggested that Rep-MiG with the homeostasis characteristic stimulated the progenitor cell-like properties of MG, probably through regulating ECM remodeling, which protected photoreceptors and improved visual function of rd10 mice. It might be a potential protocol to reprogram MG and delay mammal retinal degeneration.
Assuntos
Microglia , Degeneração Retiniana , Animais , Camundongos , Peixe-Zebra , Gliose , Neuroglia , MamíferosRESUMO
PURPOSE: To explore the optimized concentration of AAV2-GFP for sparse transfection of retinal ganglion cells (RGCs) and optic nerve (ON), and to examine the changes of microglial morphology and distribution in the retina, optic nerve and chiasm after injection. METHODS: We defined the optimal concentration of AAV2-GFP for sparse labeling of RGCs and axons in WT mice. We further explored the changes of microglial morphology and distribution in the retina, optic nerve and chiasm after intravitreal injection in CX3CR1+/GFP mice. RESULTS: 14 days after intravitreal injection of AAV2-GFP, live imaging of the retina showed that fundus fluorescence was very strong and dense at 2.16 × 1011 VG/retina, 2.16 × 1010 VG/retina, 2.16 × 109 VG/retina. RGCs were sparsely marked at a concentration 1:1000 (2.16 × 108 VG/retina) and fundus fluorescence was weak. The transfected RGCs and axons were unevenly distributed in the retina and significantly more RGCs were transfected near the injection site of AAV2-GFP compared to the other sites of the flat-mounted retina. Microglia density increased significantly in the retina and part of optic nerve, but not in the optic chiasm. The morphology of microglia was largely unchanged. CONCLUSIONS: AAV2-GFP was highly efficient and the optimal concentration of sparsely labeled RGCs was 1:1000 (2.16 × 108 VG/retina). After intravitreal injection of AAV2-GFP, the number of microglia increased partly. The morphology of microglia was comparable.
Assuntos
Microglia , Nervo Óptico , Animais , Injeções Intravítreas , Camundongos , Retina , Células Ganglionares da RetinaRESUMO
The optic nerve collects axons signals from the retinal ganglion cells and transmits visual signal to the brain. Large animal models of optic nerve injury are essential for translating novel therapeutic strategies from rodent models to clinical application due to their closer similarities to humans in size and anatomy. Here we describe some in vivo methods to evaluate the function and structure of the retinal ganglion cells (RGCs) and optic nerve (ON) in large animals, including visual evoked potential (VEP), pattern electroretinogram (PERG) and optical coherence tomography (OCT). Both goat and non-human primate were employed in this study. By presenting these in vivo methods step by step, we hope to increase experimental reproducibility among different labs and facilitate the usage of large animal models of optic neuropathies.
Assuntos
Doenças do Nervo Óptico , Células Ganglionares da Retina , Animais , Modelos Animais de Doenças , Eletrorretinografia/métodos , Potenciais Evocados Visuais , Nervo Óptico/diagnóstico por imagem , Reprodutibilidade dos Testes , Tomografia de Coerência Óptica/métodosRESUMO
Background: Visually evoked potential (VEP) is widely used to detect optic neuropathy in basic research and clinical practice. Traditionally, VEP is recorded non-invasively from the surface of the skull over the visual cortex. However, its trace amplitude is highly variable, largely due to intracranial modulation and artifacts. Therefore, a safe test with a strong and stable signal is highly desirable to assess optic nerve function, particularly in neurosurgical settings and animal experiments. Methods: Minimally invasive trans-sphenoidal endoscopic recording of optic chiasmatic potential (OCP) was carried out with a titanium screw implanted onto the sphenoid bone beneath the optic chiasm in the goat, whose sphenoidal anatomy is more human-like than non-human primates. Results: The implantation procedure was swift (within 30 min) and did not cause any detectable abnormality in fetching/moving behaviors, skull CT scans and ophthalmic tests after surgery. Compared with traditional VEP, the amplitude of OCP was 5-10 times stronger, more sensitive to weak light stimulus and its subtle changes, and was more repeatable, even under extremely low general anesthesia. Moreover, the OCP signal relied on ipsilateral light stimulation, and was abolished immediately after complete optic nerve (ON) transection. Through proof-of-concept experiments, we demonstrated several potential applications of the OCP device: (1) real-time detector of ON function, (2) detector of region-biased retinal sensitivity, and (3) therapeutic electrical stimulator for the optic nerve with low and thus safe excitation threshold. Conclusions: OCP developed in this study will be valuable for both vision research and clinical practice. This study also provides a safe endoscopic approach to implant skull base brain-machine interface, and a feasible in vivo testbed (goat) for evaluating safety and efficacy of skull base brain-machine interface.