Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(3): 374-381, 2023 Jun.
Artigo em Zh | MEDLINE | ID: mdl-37106519

RESUMO

Objective To investigate the effect of human platelet-rich plasma-derived exosomes(PRP-exos)on the proliferation of Schwann cell(SC)cultured in vitro. Methods PRP-exos were extracted by polymerization-precipitation combined with ultracentrifugation.The morphology of PRP-exos was observed by transmission electron microscopy,and the concentration and particle size distribution of PRP-exos were determined by nanoparticle tracking analysis.Western blotting was employed to determine the expression of the marker proteins CD63,CD81,and CD9 on exosome surface and the platelet membrane glycoprotein CD41.The SCs of rats were isolated and cultured,and the expression of the SC marker S100ß was detected by immunofluorescence staining.The fluorescently labeled PRP-exos were co-cultured with SCs in vitro for observation of their interaction.EdU assay was employed to detect the effect of PRP-exos on SC proliferation,and CCK-8 assay to detect the effects of PRP-exos at different concentrations(0,10,20,40,80,and 160 µg/ml)on SC proliferation. Results The extracted PRP-exos appeared as uniform saucer-shaped vesicles with the average particle size of(122.8±38.7)nm and the concentration of 3.5×1012 particles/ml.CD63,CD81,CD9,and CD41 were highly expressed on PRP-exos surface(P<0.001,P=0.025,P=0.004,and P=0.032).The isolated SCs expressed S100ß,and PRP-exos could be taken up by SCs.PRP-exos of 40,80,and 160 µg/ml promoted the proliferation of SCs,and that of 40 µg/ml showed the best performance(all P<0.01). Conclusions High concentrations of PRP-exos can be extracted from PRP.PRP-exos can be taken up by SCs and promote the proliferation of SCs cultured in vitro.


Assuntos
Exossomos , Plasma Rico em Plaquetas , Humanos , Ratos , Animais , Exossomos/metabolismo , Células de Schwann , Técnicas de Cocultura , Proliferação de Células , Células Cultivadas
2.
J Neuroinflammation ; 14(1): 17, 2017 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-28109286

RESUMO

BACKGROUND: Considerable evidence has shown that neuroinflammation and oxidative stress play an important role in the pathophysiology of postoperative cognitive dysfunction (POCD) and other progressive neurodegenerative disorders. Increasing evidence suggests that acetaminophen (APAP) has unappreciated antioxidant and anti-inflammatory properties. However, the impact of APAP on the cognitive sequelae of inflammatory and oxidative stress is unknown. The objective of this study is to explore whether APAP could have neuroprotective effects on lipopolysaccharide (LPS)-induced cognitive impairment in mice. METHODS: A mouse model of LPS-induced cognitive impairment was established to evaluate the neuroprotective effects of APAP against LPS-induced cognitive impairment. Adult C57BL/6 mice were treated with APAP half an hour prior to intracerebroventricular microinjection of LPS and every day thereafter, until the end of the study period. The Morris water maze was used to assess cognitive function from postinjection days 1 to 3. Animal behavioural tests as well as pathological and biochemical assays were performed to evaluate LPS-induced hippocampal damage and the neuroprotective effect of APAP. RESULTS: Mice treated with LPS exhibited impaired performance in the Morris water maze without changing spontaneous locomotor activity, which was ameliorated by treatment with APAP. APAP suppressed the accumulation of pro-inflammatory cytokines and microglial activation induced by LPS in the hippocampus. In addition, APAP increased SOD activity, reduced MDA levels, modulated glycogen synthase kinase 3ß (GSK3ß) activity and elevated brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Moreover, APAP significantly decreased the Bax/Bcl-2 ratio and neuron apoptosis in the hippocampus of LPS-treated mice. CONCLUSIONS: Our results suggest that APAP may possess a neuroprotective effect against LPS-induced cognitive impairment and inflammatory and oxidative stress via mechanisms involving its antioxidant and anti-inflammatory properties, as well as its ability to inhibit the mitochondrial permeability transition (MPT) pore and the subsequent apoptotic pathway.


Assuntos
Acetaminofen/farmacologia , Antioxidantes/farmacologia , Disfunção Cognitiva , Hipocampo/efeitos dos fármacos , Animais , Disfunção Cognitiva/induzido quimicamente , Lipopolissacarídeos/toxicidade , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia
3.
Biosens Bioelectron ; 205: 114089, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196601

RESUMO

Rapid and quantitative detection of paraquat is crucial because of its high toxicity. Here, we developed an ultrasensitive time-resolved fluorescence immunochromatographic assay (TRFICA) strip based on our synthesized variable domain of heavy chain antibody (VHH, also called Nanobody) for paraquat detection. Briefly, the specific immunogen selected from six designed antigens was employed to immunize alpaca, and a high-efficiency capacity of 1.6 × 1013 pfu mL-1 phage display nanobody library was established for biopanning against paraquat. The selected nanobody exhibited high sensitivity (limit of detection (LOD) was 0.0090 ng mL-1 and IC50 was 0.0588 ng mL-1 in buffer) and stability to high temperatures and denaturants. The molecular docking results indicated that the π-π, cation-π, and hydrogen bond interactions between paraquat and the pocket-like structures of complementarity-determining regions (CDRs) in VHH played a critical role in the antibody-paraquat recognition, competition, and affinity processes. The constructed TRFICA recognized paraquat through a quantitative analysis using the strip reader, and showed no cross-reactivity with other herbicides, and a semi-quantitative analysis using the naked eye. Notably, the potential practical applications of the TRFICA evaluated by performing a quantitative analysis of paraquat in food samples (vegetables, fruits, and grain products) and biological samples (blood and urine) showed a recovery rate range between 76.7% and 133.3% with inter-assay coefficient variation lower than 18.5%. The nanobody from phage display libraries was effective for small molecule recognition and detection, and it is a vital tool for immunoassay.


Assuntos
Técnicas Biossensoriais , Anticorpos de Domínio Único , Colorimetria , Limite de Detecção , Simulação de Acoplamento Molecular , Paraquat
4.
Brain Res Bull ; 130: 274-282, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28235598

RESUMO

Postoperative cognitive dysfunction (POCD) is characterized by cognitive impairments in patients after surgery. Hippocampal neuroinflammation induced by surgery is highly associated with POCD. Phosphodiesterase-4 (PDE4) is an enzyme that specifically hydrolyses cyclic adenosine monophosphate (cAMP), which plays an important role during neuroinflammation and the process of learning and memory. However, the role of PDE4 in the development of POCD remains unclear. Male 14-month-old C57BL/6 mice received carotid artery exposure to mimic POCD. First, we evaluated cognitive performance by a Morris water maze (MWM) and fear conditioning system (FCS) test after surgery. The expression of PDE4 subtypes, pro-inflammatory cytokines, p-CREB and PSD95 as well as cAMP levels were investigated. Then, we used rolipram, a PDE4 inhibitor, to block the effects of PDE4. The cognitive performance of the mice and the expression of PDE4 subtypes, pro-inflammatory cytokines, p-CREB and PSD95 as well as cAMP levels were examined again. Mice displayed learning and memory impairment, overexpression of PDE4B and PDE4D, elevation of pro-inflammatory cytokines, and reduction in the expression of p-CREB, PSD95 and cAMP levels after surgery. The expression of PDE4B and PDE4D in the hippocampus decreased following blocking of PDE4 by rolipram. Meanwhile, rolipram attenuated the cognitive impairment and the elevation of pro-inflammatory cytokines induced by surgery. Moreover, rolipram reversed the reduction of p-CREB and PSD95. These results indicate that PDE4 subtype overexpression may be involved in the development of surgery-induced cognitive dysfunction in mice.


Assuntos
Disfunção Cognitiva/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Encefalite/metabolismo , Complicações Pós-Operatórias/metabolismo , Animais , Comportamento Animal , Disfunção Cognitiva/etiologia , Citocinas/metabolismo , Encefalite/complicações , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora , Plasticidade Neuronal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA