Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(8): e2319581121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349883

RESUMO

The Tibetan Plateau, recognized as Earth's third pole and among the most responsive regions to climate shifts, profoundly influences regional and even global hydrological processes. Here, we discerned a significant weakening in the influence of temperature on the initiation of surface freeze-thaw cycle (the Start of Thawing, SOT), which can be ascribed to a multitude of climatic variables, with radiation emerging as the most pivotal factor. Additionally, we showed that the diminishing impact of warming on SOT yields amplified soil moisture within the root zone. This, in turn, fosters a greening third pole with increased leaf area index and solar-induced chlorophyll fluorescence. We further showed that current Earth system models failed to reproduce the linkage between weakened sensitivity and productivity under various shared socioeconomic pathways. Our findings highlight the dynamic shifts characterizing the influence of climate warming on spring freeze-thaw process and underscore the profound ecological implications of these changes in the context of future climate scenarios.

2.
FASEB J ; 38(1): e23365, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069862

RESUMO

CD30 is a member of the tumor necrosis factor receptor (TNFR) superfamily and expressed in both normal and malignant lymphoid cells. However, the role of CD30 in lymphopoiesis is not known. In this study, we showed CD30 was expressed both in T and B cells, but its deficiency in mice had no effect on T- and B-cell development. In fact, CD30 deficiency attenuated B-cell response to T-cell-dependent antigens. The impaired B cell response in CD30-deficient mice is caused by the reduction of activation-induced cytidine deaminase (AID) expression. Moreover, CD30-deficient mice exhibited decreased TCR-mediated T cell proliferation and slightly impaired TCR signaling. High-throughput RNA sequencing analysis revealed that CD30 deficiency led to a decrease of FOXO-autophagy axis in T cells upon TCR stimulation. Thus, CD30 positively regulates T-cell-dependent immune response and T cell proliferation.


Assuntos
Antígeno Ki-1 , Ativação Linfocitária , Linfócitos T , Animais , Camundongos , Proliferação de Células , Antígeno Ki-1/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia
3.
Small ; : e2401892, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794995

RESUMO

Inorganic solid-state electrolytes have attracted enormous attention due to their potential safety, increased energy density, and long cycle-life benefits. However, their application in solid-state batteries is limited by unstable electrode-electrolyte interface, poor point-to-point physical contact, and low utilization of metallic anodes. Herein, interfacial engineering based on sodium (Na)-conductive polymeric solid-state interfacial adhesive is studied to improve interface stability and optimize physical contacts, constructing a robust organic-rich solid electrolyte interphase layer to prevent dendrite-induced crack propagation and security issues. The interfacial adhesive strategy significantly increases the room-temperature critical current density of inorganic Na-ion conductors from 0.8 to 3.2 mA cm-2 and markedly enhances the cycling performance of solid-state batteries up to 500 cycles, respectively. Particularly, the Na3V2(PO4)3-based full solid-state batteries with high cathode loading of 10.16 mg cm-2 also deliver an excellent cycling performance, further realizing the stable operation of solid-state laminated pouch cells. The research provides fundamental perspectives into the role of interfacial chemistry and takes the field a step closer to realizing practical solid-state batteries.

4.
Small ; : e2311086, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459647

RESUMO

Despite the low competitive cost and high theoretical capacity of lithium-sulfur (Li-S) batteries, their practical application is severely hindered by the lithium polysulfide (LiPS) shuttling and low conversion efficiency. Herein, the electronic structure of hollow Titanium dioxide nanospheres is tunned by single Iron atom dopants that can cooperatively enhance LiPS absorption and facilitate desired redox reaction in practical Li-S batteries, further suppressing the notorious shuttle effect, which is consistent with theoretical calculations and in situ UV/vis investigation. The obtained electrode with massive active sites and lower energy barrier for sulfur conversions exhibits exceptional cycling stability after 500 cycles and high capacity under the sulfur loading of 10.53 mg cm-2 . In particular, an Ah-level Li-S pouch cell is fabricated, further demonstrating that the synthetic strategy based on atomic-level design offers a promising route toward practical high-energy-density Li-S batteries.

5.
FASEB J ; 37(4): e22862, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36906291

RESUMO

The paraspeckle protein NONO is a multifunctional nuclear protein participating in the regulation of transcriptional regulation, mRNA splicing and DNA repair. However, whether NONO plays a role in lymphopoiesis is not known. In this study, we generated mice with global deletion of NONO and bone marrow (BM) chimeric mice in which NONO is deleted in all of mature B cells. We found that the global deletion of NONO in mice did not affect T-cell development but impaired early B-cell development in BM at pro- to pre-B-cell transition stage and B-cell maturation in the spleen. Studies of BM chimeric mice demonstrated that the impaired B-cell development in NONO-deficient mice is B-cell-intrinsic. NONO-deficient B cells displayed normal BCR-induced cell proliferation but increased BCR-induced cell apoptosis. Moreover, we found that NONO deficiency impaired BCR-induced activation of ERK, AKT, and NF-κB pathways in B cells, and altered BCR-induced gene expression profile. Thus, NONO plays a critical role in B-cell development and BCR-induced B-cell activation.


Assuntos
NF-kappa B , Transdução de Sinais , Camundongos , Animais , Camundongos Knockout , NF-kappa B/metabolismo , Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
6.
Molecules ; 29(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38792106

RESUMO

Cyclodextrins (CDs) were used as green char promoters in the formulation of organophosphorus flame retardants (OPFRs) for polymeric materials, and they could reduce the amount of usage of OPFRs and their release into the environment by forming [host:guest] inclusion complexes with them. Here, we report a systematic study on the inclusion complexes of natural CDs (α-, ß-, and γ-CD) with a representative OPFR of DOPO using computational methods of molecular docking, molecular dynamics (MD) simulations, and quantum mechanical (QM) calculations. The binding modes and energetics of [host:guest] inclusion complexes were analyzed in details. α-CD was not able to form a complete inclusion complex with DOPO, and the center of mass distance [host:guest] distance amounted to 4-5 Å. ß-CD and γ-CD allowed for a deep insertion of DOPO into their hydrophobic cavities, and DOPO was able to frequently change its orientation within the γ-CD cavity. The energy decomposition analysis based on the dispersion-corrected density functional theory (sobEDAw) indicated that electrostatic, orbital, and dispersion contributions favored [host:guest] complexation, while the exchange-repulsion term showed the opposite. This work provides an in-depth understanding of using CD inclusion complexes in OPFRs formulations.

7.
Glob Chang Biol ; 29(16): 4556-4568, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37120816

RESUMO

The soil freeze-thaw cycle in the permafrost regions has a significant impact on regional surface energy and water balance. Although increasing efforts have been made to understand the responses of spring thawing to climate change, the mechanisms controlling the global interannual variability of the start date of permafrost frozen (SOF) remain unclear. Using long-term SOF from the combinations of multiple satellite microwave sensors between 1979 and 2020, and analytical techniques, including partial correlation, ridge regression, path analysis, and machine learning, we explored the responses of SOF to multiple climate change factors, including warming (surface and air temperature), start date of permafrost thawing (SOT), soil properties (soil temperature and volume of water), and the snow depth water equivalent (SDWE). Overall, climate warming exhibited the maximum control on SOF, but SOT in spring was also an important driver of SOF variability; among the 65.9% significant SOT and SOF correlations, 79.3% were positive, indicating an overall earlier thawing would contribute to an earlier frozen in winter. The machine learning analysis also suggested that apart from warming, SOT ranked as the second most important determinant of SOF. Therefore, we identified the mechanism responsible for the SOT-SOF relationship using the SEM analysis, which revealed that soil temperature change exhibited the maximum effect on this relationship, irrespective of the permafrost type. Finally, we analyzed the temporal changes in these responses using the moving window approach and found increased effect of soil warming on SOF. In conclusion, these results provide important insights into understanding and predicting SOF variations with future climate change.


Assuntos
Pergelissolo , Solo , Congelamento , Água , Mudança Climática
8.
Clin Anat ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37596915

RESUMO

Several reports have shown a coincidence relationship between perforators and acupoints. However, there have been few previous reports of objective experimental methods to verify the reliability of the accuracy of acupoint location (APL) with nearby perforators. This research aimed to determine the internal agreement of the APL of five acupuncturists and to analyze the coincidence rate of acupoints with nearby perforators. Three two healthy volunteers were recruited with the inclusion and exclusion criteria. Three TCM clinical physicians determined acupoints in areas of the lower limb of participants. Two microsurgeons sketched corresponding regions based on the most common skin flap operation sites, located bone markers, and drew the skin flap axis. Doppler ultrasound was used to mark the perforator point and the distances measured for both points. There is no significant difference in the distance between the acupoints and perforators localization in different groups, and there are significant differences between the angle formed by acupoints and penetrators in all groups. All the points located by the traditional Chinese medicine (TCM) therapists are distributed around the dot. The distance between the coordinate point (A-B) of Wenliu (LI7) localization is the largest, reaching 16.6 mm. The accuracy of the acupoint location of each physician is limited by the clinical experience of physicians, and the difference among them is significant. There is a certain correspondence between the location of acupoints and perforators, which needs further studies to confirm.

9.
Molecules ; 28(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37959744

RESUMO

Aldehyde dehydrogenase-2 (ALDH2) is a crucial enzyme participating in intracellular aldehyde metabolism and is acknowledged as a potential therapeutic target for the treatment of alcohol use disorder and other addictive behaviors. Using previously reported ALDH2 inhibitors of Daidzin, CVT-10216, and CHEMBL114083 as reference molecules, here we perform a ligand-based virtual screening of world-approved drugs via 2D/3D similarity search methods, followed by the assessments of molecular docking, toxicity prediction, molecular simulation, and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis. The 2D molecular fingerprinting of ECFP4 and FCFP4 and 3D molecule-shape-based USRCAT methods show good performances in selecting compounds with a strong binding behavior with ALDH2. Three compounds of Zeaxanthin (q = 0), Troglitazone (q = 0), and Sequinavir (q = +1 e) are singled out as potential inhibitors; Zeaxanthin can only be hit via USRCAT. These drugs displayed a stronger binding strength compared to the reported potent inhibitor CVT-10216. Sarizotan (q = +1 e) and Netarsudil (q = 0/+1 e) displayed a strong binding strength with ALDH2 as well, whereas they displayed a shallow penetration into the substrate-binding tunnel of ALDH2 and could not fully occupy it. This likely left a space for substrate binding, and thus they were not ideal inhibitors. The MM-PBSA results indicate that the selected negatively charged compounds from the similarity search and Vina scoring are thermodynamically unfavorable, mainly due to electrostatic repulsion with the receptor (q = -6 e for ALDH2). The electrostatic attraction with positively charged compounds, however, yielded very strong binding results with ALDH2. These findings reveal a deficiency in the modeling of electrostatic interactions (in particular, between charged moieties) in the virtual screening via the 2D/3D similarity search and molecular docking with the Vina scoring system.


Assuntos
Reposicionamento de Medicamentos , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Ligantes , Zeaxantinas
10.
Angew Chem Int Ed Engl ; 62(42): e202306901, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37302981

RESUMO

The sluggish sulfur redox kinetics and shuttle effect of lithium polysulfides (LiPSs) are recognized as the main obstacles to the practical applications of the lithium-sulfur (Li-S) batteries. Accelerated conversion by catalysis can mitigate these issues, leading to enhanced Li-S performance. However, a catalyst with single active site cannot simultaneously accelerate multiple LiPSs conversion. Herein, we developed a novel dual-defect (missing linker and missing cluster defects) metal-organic framework (MOF) as a new type of catalyst to achieve synergistic catalysis for the multi-step conversion reaction of LiPSs. Electrochemical tests and first-principle density functional theory (DFT) calculations revealed that different defects can realize targeted acceleration of stepwise reaction kinetics for LiPSs. Specifically, the missing linker defects can selectively accelerate the conversion of S8 →Li2 S4 , while the missing cluster defects can catalyze the reaction of Li2 S4 →Li2 S, so as to effectively inhibit the shuttle effect. Hence, the Li-S battery with an electrolyte to sulfur (E/S) ratio of 8.9 mL g-1 delivers a capacity of 1087 mAh g-1 at 0.2 C after 100 cycles. Even at high sulfur loading of 12.9 mg cm-2 and E/S=3.9 mL g-1 , an areal capacity of 10.4 mAh cm-2 for 45 cycles can still be obtained.

11.
Blood Cells Mol Dis ; 97: 102697, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35872110

RESUMO

MicroRNAs are known to regulate cell proliferation, differentiation, and apoptosis. However, the immunological mechanism and role of microRNA9-3 (miR9-3) are unknown. This study used CRISPR/cas9 technology to knock out miR9-3 to modulate its expression level. FACS results showed that the absolute number of total B cells declined in miR9-3-deficiency in the spleen (Sp), bone marrow (BM), and lymph node (LN) to different levels compared to the wild-type. Also, the absolute numbers of Fo, T1, and T2 cells decreased both in Sp and LN. The absolute numbers of total T cells in Sp and LN declined sharply; CD4+ and CD8+ T cells showed a dramatic decrease in Sp, LN, and Th (thymus) of the miR9-3- group. In BM, the cells number of immature B cells, pro-pre-B cells, pro-B cells, and pre-B cells reduced to different levels, while mature B cells were comparable to wild-type. These data illustrated that miR9-3-deficiency impaired the development of B cells in BM. Also, the development of T cells was severely impaired. In Th, the numbers of DN and DP cells were remarkably reduced in the miR9-3 mutant mice. Also, the numbers of DN-1, DN-3, and DN-4 cells decreased. The absolute number of cells in the hematopoietic stem cell (HSC) system such as LT-HSC (long-term HSC), ST-HSC (short-term HSC), MPP (multipotent progenitor), GMP (granulocyte-macrophage progenitor), CMP (common myeloid progenitors), MEP (megakaryocyte-erythroid progenitor), and CLP (common lymphoid progenitor) all were decreased in miR9-3 deficient mice. These results showed that miR9-3 deficiency initiated the damage to the entire hematopoietic system. Moreover, the absolute number of myeloid cells in both Sp and BM decreased in mutant mice. The cells number of NK cells showed a sharp reduction in Sp whereas the change was not significant in BM. The above results suggest that miR9-3 participates in the immune regulation of B cells, T cells, and the HSC system, highlighting its regulatory roles.


Assuntos
Linfócitos B , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Células-Tronco Hematopoéticas , MicroRNAs , Animais , Medula Óssea/patologia , Células da Medula Óssea , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/imunologia
12.
Phys Chem Chem Phys ; 24(26): 16244-16262, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35758314

RESUMO

Hydration free energy (HFE) as the most important solvation parameter is often targeted in ion model development, even though the reported values differ by dozens of kcal mol-1 mainly due to the experimentally undetermined HFE of the proton ΔG°(H+). The choice of ΔG°(H+) obviously affects the hydration of single ions and the relative HFE between the ions with different (magnitude or sign) charges, and the impacts of targeted HFEs on the ion solvation and ion-ion interactions are largely unrevealed. Here we designed point charge models of K+, Mg2+, Al3+, and Cl- ions targeting a variety of HFE references and then investigated the HFE influences on the simulations of dilute and concentrated ion solutions and of the salt ion pairs in gas, liquid, and solid phases. Targeting one more property of ion-water oxygen distances (IOD) leaves the ion-water binding distance invariant, while the binding strength increases with the decreasing (more negative) HFE of ions as a result of a decrease in ΔG°(H+) for the cation and an increase in ΔG°(H+) for the anion. The increase in ΔG°(H+) leads to strengthened cation-anion interactions and thus to close ion-ion contacts, low osmotic pressures, and small activity derivatives in concentrated ion solutions as well as too stable ion pairs of the salts in different phases. The ion diffusivity and water exchange rates around the ions are simply not HFE dependent but rather more complex. Targeting both the aqueous IOD and salt crystal properties of KCl was also attempted and the comparison between different models indicates the complexity and challenge in obtaining a balanced performance between different phases using classical force fields. Our results also support that a real ΔG°(H+) value of -259.8 kcal mol-1 recommended by Hünenberger and Reif guides ion models to reproduce ion-water and ion-ion interactions reasonably at relatively low salt concentrations. Simulations of a metalloprotein show that a relatively more positive ΔG°(H+) for Mg2+ model is better for a reasonable description of the metal binding network.


Assuntos
Cloreto de Sódio , Água , Íons , Termodinâmica , Água/química
13.
Molecules ; 27(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36557906

RESUMO

Mitochondrial aldehyde dehydrogenase (ALDH2) is a potential target for the treatment of substance use disorders such as alcohol addiction. Here, we adopted computational methods of molecular dynamics (MD) simulation, docking, and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis to perform a virtual screening of FDA-approved drugs, hitting potent inhibitors against ALDH2. Using MD-derived conformations as receptors, butenafine (net charge q = +1 e) and olaparib (q = 0) were selected as promising compounds with a low toxicity and a binding strength equal to or stronger than previously reported potent inhibitors of daidzin and CVT-10216. A few negatively charged compounds were also hit from the docking with the Autodock Vina software, while the MM-PBSA analysis yielded positive binding energies (unfavorable binding) for these compounds, mainly owing to electrostatic repulsion in association with a negatively charged receptor (q = -6 e for ALDH2 plus the cofactor NAD+). This revealed a deficiency of the Vina scoring in dealing with strong charge-charge interactions between binding partners, due to its built-in protocol of not using atomic charges for electrostatic interactions. These observations indicated a requirement of further verification using MD and/or MM-PBSA after docking prediction. The identification of key residues for the binding implied that the receptor residues at the bottom and entrance of the substrate-binding hydrophobic tunnel were able to offer additional interactions with different inhibitors such as π-π, π-alkyl, van der Waals contacts, and polar interactions, and that the rational use of these interactions is beneficial to the design of potent inhibitors against ALDH2.


Assuntos
Simulação de Dinâmica Molecular , Aldeído-Desidrogenase Mitocondrial , Simulação de Acoplamento Molecular
14.
Glob Chang Biol ; 27(12): 2914-2927, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33651464

RESUMO

Vegetation phenology in spring has substantially advanced under climate warming, consequently shifting the seasonality of ecosystem process and altering biosphere-atmosphere feedbacks. However, whether and to what extent photoperiod (i.e., daylength) affects the phenological advancement is unclear, leading to large uncertainties in projecting future phenological changes. Here we examined the photoperiod effect on spring phenology at a regional scale using in situ observation of six deciduous tree species from the Pan European Phenological Network during 1980-2016. We disentangled the photoperiod effect from the temperature effect (i.e., forcing and chilling) by utilizing the unique topography of the northern Alps of Europe (i.e., varying daylength but uniform temperature distribution across latitudes) and examining phenological changes across latitudes. We found prominent photoperiod-induced shifts in spring leaf-out across latitudes (up to 1.7 days per latitudinal degree). Photoperiod regulates spring phenology by delaying early leaf-out and advancing late leaf-out caused by temperature variations. Based on these findings, we proposed two phenological models that consider the photoperiod effect through different mechanisms and compared them with a chilling model. We found that photoperiod regulation would slow down the advance in spring leaf-out under projected climate warming and thus mitigate the increasing frost risk in spring that deciduous forests will face in the future. Our findings identify photoperiod as a critical but understudied factor influencing spring phenology, suggesting that the responses of terrestrial ecosystem processes to climate warming are likely to be overestimated without adequately considering the photoperiod effect.


Assuntos
Fotoperíodo , Árvores , Mudança Climática , Ecossistema , Europa (Continente) , Folhas de Planta , Estações do Ano , Temperatura
15.
J Chem Inf Model ; 61(6): 2981-2997, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34080414

RESUMO

A large diversity in the targeted hydration free energies (HFEs) during model parameterization of metal ions was reported in the literature with a difference by dozens of kcal/mol. Here, we developed a series of nonbonded dummy models of the Mg2+ ion targeting different HFE references in TIP3P water, followed by assessments of the designed models in the simulations of MgCl2 solution and biological systems. Together with the comparison of existing models, we conclude that the difference in the targeted HFEs has a limited influence on the model performance, while the usability of these models differs from case to case. The feasibility of reproducing more properties of Mg2+ such as diffusion constants and water exchange rates using a nonbonded dummy model is demonstrated. Underestimated activity derivative and osmotic coefficient of MgCl2 solutions in high concentration reveal a necessity for further optimization of ion-pair interactions. The developed dummy models are applicable to metal coordination with Asp, Glu, and His residues in metalloenzymes, and the performance in predicting monodentate or bidentate binding modes of Asp/Glu residues depends on the complexity of metal centers and the choice of protein force fields. When both the binding modes coexist, the nonbonded dummy models outperform point charge models, probably in need of considering polarization of metal-binding residues by, for instance, charge calibration in classical force fields. This work is valuable for the use and further development of magnesium ion models for simulations of metal-containing systems with good accuracy.


Assuntos
Magnésio , Água , Entropia , Íons , Termodinâmica
16.
J Chem Inf Model ; 61(9): 4613-4629, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34467756

RESUMO

Here, we developed nonbonded point charge models using a simple Lennard-Jones (LJ) 12-6 potential for highly charged metal cations (18 trivalent and 6 tetravalent ions) for use with 11 water models of TIP3P, OPC3, SPC/E, SPC/Eb, TIP3P-FB, a99SB-disp, TIP4P-Ew, OPC, TIP4P/2005, TIP4P-D, and TIP4P-FB. The designed models simultaneously reproduce the hydration free energy (HFE) and ion-oxygen distance (IOD) in the first hydration shell with an error within 1 kcal/mol and 0.01 Å on average, respectively, and yield reasonable coordination numbers for most cations. Such performance is equivalent to the previously reported point charge models using a more complex 12-6-4 LJ-type potential, while the LJ R parameters of our models are much close to Shannon's revised effective ion radii than that of the 12-6-4 models. Our designed models overestimate the diffusion constants of several trivalent ions by 5-68%. The performance in predicting osmotic coefficients of trivalent chlorides in aqueous solution depends on the salt type. A calibration of cation-anion interacting LJ parameters reproduces the experimental osmotic coefficients of an AlCl3 solution at 0.2-3.0 mol/L. The effectiveness of our new models is further demonstrated by simulating a metalloprotein system with four force field/water combinations. This work facilitates accurate modeling of metal-containing systems by a variety of force fields and water models in aqueous solution.


Assuntos
Metais , Água , Cátions , Entropia , Termodinâmica
17.
J Chem Inf Model ; 61(8): 4031-4044, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34313132

RESUMO

Exploring a metal-involved biochemical process at a molecular level often requires a reliable description of metal properties in aqueous solution by classical nonbonded models. An additional C4 term for considering ion-induced dipole interactions was previously proposed to supplement the widely used Lennard-Jones 12-6 potential (known as the 12-6-4 LJ-type model) with good accuracy. Here, we demonstrate an alternative to modeling divalent metal cations (M2+) with the traditional 12-6 LJ potential by developing nonbonded point charge models for use with 11 water models: TIP3P, SPC/E, SPC/Eb, TIP4P-Ew, TIP4P-D, and TIP4P/2005 and the more recent OPC3, TIP3P-FB, OPC, TIP4P-FB, and a99SB-disp. Our designed models simultaneously reproduce the experimental hydration free energy, ion-oxygen distance, and coordination number in the first hydration shell accurately for most of the metal cations, an accuracy equivalent to that of the complex 12-6-4 LJ-type and double exponential potential models. A systematic comparison with the existing M2+ models is presented as well in terms of effective ion radii, diffusion constants, water exchange rates, and ion-water interactions. Molecular dynamics simulations of metal substitution in Escherichia coli glyoxalase I variants show the great potential of our new models for metalloproteins.


Assuntos
Metais , Simulação de Dinâmica Molecular , Cátions , Entropia , Água
18.
Nanotechnology ; 33(11)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34740208

RESUMO

The development of efficient sulfur host materials to address the shuttle effect issues of lithium polysulfides (LiPSs) is crucial in the lithium-sulfur (Li-S) batteries but still challenging. In the present study, a novel yolk shell structured MgCo-LDH/ZIF-67 composite is designed as Li-S battery cathode. In this composite, the shell layer is MgCo layered double hydroxide constructed by partially etching ZIF-67 nanoparticle by Mg2+, and the core is the unreacted ZIF-67 particle. The unique yolk shell structure not only provides abundant pores for sulfur accommodation, but also facilitates the electrolyte penetration and ion transport. The ZIF-67 core exhibits strong polar adsorption to LiPSs through the Lewis acid-base interactions, and the micropores/mesoporous can further trap LiPSs. Meanwhile, the MgCo-LDH shell exposes enough sulfur-philic sites for enhancing chemisorption and catalyzes LiPSs conversion. As a result, when MgCo-LDH/ZIF-67 is used as sulfur host in the cathode, the cell achieves a high discharge capacity of 1121 mAh g-1at 0.2 C, and an areal capacity of 5.0 mAh cm-2under high sulfur loading of 5.8 mg cm-2. The S/MgCo-LDH/ZIF-67 electrode holds a promising potential for the development of Li-S batteries.

19.
Nanotechnology ; 32(7): 075403, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33096535

RESUMO

Advanced design and fabrication of high performance sulfur cathodes with improved conductivity and chemical adsorption towards lithium polysulfides (LiPS) are crucial for further development of Li-S batteries. Hence, we designed a TiO2/Co3O4-CNTs composite derived from Ti-MOF (MIL-125) as the host matrix for sulfur cathode. The polar nature of metal oxides (TiO2, Co3O4) creates the adsorptive sites in the composite and leads to an efficient chemical capture of LiPS. The CNTs ensure the contact between S/Li2S and the host material with high conductivity, enhanced charge transfer and fast electrochemical kinetics. At the same time, the CNTs strengthen the stability of the electrode material. Consequently, the as-prepared TiO2/Co3O4-CNTs composite showed excellent electrochemical performance. The cell with S-TiO2/Co3O4-CNTs delivers an initial specific capacity of 1270 mAh g-1 at 0.2 C and high rate performance with a capacity of 603 mAh g-1 at 3 C.

20.
Nanotechnology ; 32(19): 195701, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33513589

RESUMO

The MXene combining high surface area, prominent biocompatibility, and wide near infrared (NIR) absorption has been recognized as one of the most promising materials for tumor therapy. The application of MXene in tumor therapy is negatively affected by the current design methods lack the control of size distribution and the great tendency to agglomerate as well as poor photodynamic therapy. To solve the above problems, we report a facile strategy to process Ti3C2 nanosheets into three-dimensional (3D) structure with honeycomb structure and anti-aggregation properties for synergistic therapy of chemotherapy, photothermal and photodynamic therapy. The 3D MXene is synthesized by spray drying, in which the MXene surface is oxidized to TiO2. The microspheres present prominent NIR light trigger photothermal effect and excellent NIR light photostability, which respond in an on-off manner. Moreover, the microspheres exhibit outstanding drug-loading capability of doxorubicin (DOX) as high as 87.3%, and substantial singlet oxygen generation (1O2) was shown under 808 nm laser and UV light irradiation. Our studies indicate that 3D MXene-DOX could effectively achieve Hela cells killing in vitro, which provides a multifunctional drug delivery platform as a prospective candidate for future combined cancer therapy.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos/métodos , Microesferas , Nanoestruturas , Fotoquimioterapia/métodos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Nanoestruturas/química , Nanoestruturas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA