Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 49(5): 1150-1165, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38296858

RESUMO

Cannabis sativa has been used for improving sleep for long history. Cannabidiol (CBD) has drown much attention as a non-addictive psychoactive component in Cannabis sativa extract. However, the effects of CBD on sleep architecture and it's acting mechanism remains unclear. In the present study, we evaluated the sedative-hypnotic effect of cannabidiol (CBD), assessed the effects of CBD on sleep using a wireless physiological telemetry system. We further explored the therapeutic effects of CBD using 4-chloro-dl-phenylalanine (PCPA) induced insomnia model and changes in sleep latency, sleep duration and intestinal flora were evaluated. CBD shortened sleep latency and increases sleep duration in both normal and insomnia mice, and those effects were blocked by 5-HT1A receptor antagonist WAY100635. We determined that CBD increases 5-HT1A receptors expression and 5-HT content in the hypothalamus of PCPA-pretreated mice and affects tryptophan metabolism in the intestinal flora. These results showed that activation of 5-HT1A receptors is one of the potential mechanisms underlying the sedative-hypnotic effect of CBD. This study validated the effects of CBD on sleep and evaluated its potential therapeutic effects on insomnia.


Assuntos
Canabidiol , Distúrbios do Início e da Manutenção do Sono , Camundongos , Animais , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Serotonina/metabolismo , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Receptor 5-HT1A de Serotonina , Distúrbios do Início e da Manutenção do Sono/induzido quimicamente , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Antagonistas da Serotonina
2.
Neurochem Res ; 49(7): 1735-1750, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38530508

RESUMO

The consumption of a high-fat diet (HFD) has been implicated in the etiology of obesity and various neuropsychiatric disturbances, including anxiety and depression. Compelling evidence suggests that far-infrared ray (FIR) possesses beneficial effects on emotional disorders. However, the efficacy of FIR therapy in addressing HFD-induced anxiety and the underlying mechanisms remain to be elucidated. Here, we postulate that FIR emitted from a graphene-based therapeutic device may mitigate HFD-induced anxiety behaviors. The graphene-FIR modify the gut microbiota in HFD-mice, particularly by an enriched abundance of beneficial bacteria Clostridiaceae and Erysipelotrichaceae, coupled with a diminution of harmful bacteria Lachnospiraceae, Anaerovoracaceae, Holdemania and Marvinbryantia. Graphene-FIR also improved intestinal barrier function, as evidenced by the augmented expression of the tight junction protein occludin and G protein-coupled receptor 43 (GPR43). In serum level, we observed the decreased free fatty acids (FFA), lipopolysaccharides (LPS), diamine oxidase (DAO) and D-lactate, and increased the glucagon-like peptide-2 (GLP-2) levels in graphene-FIR mice. Simultaneously, inflammatory cytokines IL-6, IL-1ß, and TNF-α manifested a decrease subsequent to graphene-FIR treatment in both peripheral and central system. Notably, graphene-FIR inhibited over expression of astrocytes and microglia. We further noticed that the elevated the BDNF and decreased TLR4 and NF-κB expression in graphene-FIR group. Overall, our study reveals that graphene-FIR rescued HFD-induced anxiety via improving the intestine permeability and the integrity of blood-brain barrier, and reduced inflammatory response by down regulating TLR4/NF-κB inflammatory pathway.


Assuntos
Ansiedade , Dieta Hiperlipídica , Microbioma Gastrointestinal , Grafite , Camundongos Endogâmicos C57BL , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Grafite/uso terapêutico , Grafite/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ansiedade/etiologia , Ansiedade/metabolismo , Raios Infravermelhos/uso terapêutico , Obesidade/metabolismo , Camundongos , Doenças Neuroinflamatórias/metabolismo , Camundongos Obesos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos
3.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000081

RESUMO

Spermidine is well known to accumulate in plants exposed to drought, but the regulatory network associated with its biosynthesis and accumulation and the underlying molecular mechanisms remain unclear. Here, we demonstrated that the Trifolium repens TrMYB33 relayed the ABA signal to modulate drought-induced spermidine production by directly regulating the expression of TrSAMS1, which encodes an S-adenosylmethionine synthase. This gene was identified by transcriptome and expression analysis in T. repens. TrSAMS1 overexpression and its pTRV-VIGS-mediated silencing demonstrated that TrSAMS1 is a positive regulator of spermidine synthesis and drought tolerance. TrMYB33 was identified as an interacting candidate through yeast one-hybrid library screening with the TrSAMS1 promoter region as the bait. TrMYB33 was confirmed to bind directly to the predicted TAACCACTAACCA (the TAACCA MYB binding site is repeated twice in tandem) within the TrSAMS1 promoter and to act as a transcriptional activator. Additionally, TrMYB33 contributed to drought tolerance by regulating TrSAMS1 expression and modulating spermidine synthesis. Additionally, we found that spermidine accumulation under drought stress depended on ABA and that TrMYB33 coordinated ABA-mediated upregulation of TrSAMS1 and spermidine accumulation. This study elucidated the role of a T. repens MYB33 homolog in modulating spermidine biosynthesis. The further exploitation and functional characterization of the TrMYB33-TrSAMS1 regulatory module can enhance our understanding of the molecular mechanisms responsible for spermidine accumulation during drought stress.


Assuntos
Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Espermidina , Trifolium , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Trifolium/genética , Trifolium/metabolismo , Espermidina/metabolismo , Espermidina/biossíntese , Regiões Promotoras Genéticas , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transdução de Sinais , Resistência à Seca
4.
Zhongguo Zhong Yao Za Zhi ; 49(1): 141-150, 2024 Jan.
Artigo em Zh | MEDLINE | ID: mdl-38403347

RESUMO

This study established an HPLC fingerprint and multi-component content determination method for salt-fired Eucommiae Cortex, and evaluated the quality of salt-fired Eucommiae Cortex from different sources using fingerprint similarity evaluation, cluster analysis(CA), principal component analysis(PCA), and orthogonal partial least square discriminate analysis(OPLS-DA). HPLC was launched on a Cosmosil 5C_(18)-MS-Ⅱ column(4.6 mm×250 mm, 5 µm) by gradient elution with a mobile phase of methanol-0.2% phosphoric acid aqueous solution at a flow rate of 1.0 mL·min~(-1), detection wavelength of 238 nm, column temperature of 30 ℃, and an injection volume of 10 µL. The results of fingerprint similarity evaluation for 20 batches of salt-fired Eucommiae Cortex indicated that, except for batch S3 with a similarity of 0.893, the similarity of the other 19 batches was of ≥ 0.919, suggesting good similarity. Fourteen common peaks were calibrated and seven common peaks were identified including geniposidic acid. The mass fractions of geniposidic acid, chlorogenic acid, geniposide, genipin, pinoresinol diglucoside, liriodendrin, and pinoresinol-4-O-ß-D-glucopyranoside were 0.062 0%-0.426 9%, 0.024 9%-0.116 5%, 0.009 5%-0.052 9%, 0.005 5%-0.034 8%, 0.115 9%-0.317 8%, 0.016 4%-0.108 8%, and 0.026 4%-0.039 8%, respectively. Using CA, PCA, and OPLS-DA, the 20 batches of salt-fired Eucommiae Cortex were classified into three categories. Additionally, through the analysis of variable importance in projection(VIP) under OPLS-DA, two differential quality markers, geniposidic acid and chlorogenic acid, were identified. The established HPLC fingerprint and multi-component content determination method is stable and reliable, providing a reference for quality control of salt-fired Eucommiae Cortex.


Assuntos
Quimiometria , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Glucosídeos Iridoides/análise , Cloreto de Sódio
5.
J Cell Mol Med ; 28(5): e18063, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041544

RESUMO

The application of immune checkpoint inhibitor (ICI) using monoclonal antibodies has brought about a profound transformation in the clinical outcomes for patients grappling with advanced gastric cancer (GC). Nonetheless, despite these achievements, the quest for effective functional biomarkers for ICI therapy remains constrained. Recent research endeavours have shed light on the critical involvement of modified epigenetic regulators in the pathogenesis of gastric tumorigenesis, thus providing a glimpse into potential biomarkers. Among these regulatory factors, AT-rich interaction domain 1A (ARID1A), a pivotal constituent of the switch/sucrose non-fermentable (SWI/SNF) complex, has emerged as a promising candidate. Investigations have unveiled the pivotal role of ARID1A in bridging the gap between genome instability and the reconfiguration of the tumour immune microenvironment, culminating in an enhanced response to ICI within the landscape of gastric cancer treatment. This all-encompassing review aims to dissect the potential of ARID1A as a valuable biomarker for immunotherapeutic approaches in gastric cancer, drawing from insights garnered from both preclinical experimentation and clinical observations.

6.
Respir Res ; 24(1): 69, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879222

RESUMO

BACKGROUND: Airway epithelium is the first barrier against environmental insults, and epithelial barrier dysfunction caused by cigarette smoke (CS) is particularly relevant to chronic obstructive pulmonary disease (COPD) progression. Our study was to determine whether Azithromycin (AZI) ameliorates CS-induced airway epithelial barrier dysfunction and the underlying mechanisms. METHODS: Primary bronchial epithelial cells (PBECs), human bronchial epithelial cells (HBECs), Sprague Dawley rats and nuclear factor erythroid 2-related factor 2 (Nrf2)-/- mice were pretreated with AZI and subsequently exposed to CS. Transepithelial electronic resistance (TEER), junction proteins as well as pro-inflammatory cytokines and apoptosis markers were examined to assess epithelial barrier dysfunction. Metabolomics study was applied to explore the underlying mechanism of AZI. RESULTS: CS-induced TEER decline and intercellular junction destruction, accompanied with inflammatory response and cell apoptosis in PBECs were restored by AZI dose-dependently, which were also observed in CS-exposed rats. Mechanistically, GSH metabolism pathway was identified as the top differentially impacted pathway and AZI treatment upregulated the activities of glutamate cysteine ligase (GCL) and the contents of metabolites in GSH metabolic pathway. Furthermore, AZI apparently reversed CS-induced Nrf2 suppression, and similar effects on airway epithelial barrier dysfunction were also found for Nrf2 agonist tert-butylhydroquinone and vitamin C. Finally, deletion of Nrf2 in both HBECs and C57BL/6N mice aggravated CS-induced GSH metabolism imbalance to disrupt airway epithelial barrier and partially deprived the effects of AZI. CONCLUSION: These findings suggest that the clinical benefits of AZI for COPD management are related with the protection of CS-induced airway epithelial barrier dysfunction via activating Nrf2/GCL/GSH pathway, providing potential therapeutic strategies for COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Ratos , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Glutamato-Cisteína Ligase , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Ratos Sprague-Dawley , Transdução de Sinais , Glutationa/metabolismo
7.
Int J Mol Sci ; 23(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36361560

RESUMO

Heat shock transcription factors (HSF) are divided into classes A, B and C. Class A transcription factors are generally recognized as transcriptional activators, while functional characterization of class B and C heat shock transcription factors have not been fully developed in most plant species. We isolated and characterized a novel HSF transcription factor gene, TrHSFB2a (a class B HSF) gene, from the drought stress-sensitive forage crop species, white clover (Trifolium repens). TrHSFB2a was highly homologous to MtHSFB2b, CarHSFB2a, AtHSFB2b and AtHSFB2a. The expression of TrHSFB2a was strongly induced by drought (PEG6000 15% w/v), high temperature (35 °C) and salt stresses (200 mM L-1 NaCl) in white clover, while subcellular localization analysis showed that it is a nuclear protein. Overexpression of the white clover gene TrHSFB2a in Arabidopsis significantly reduced fresh and dry weight, relative water contents (RWC), maximum photosynthesis efficiency (Fv/Fm) and performance index on the absorption basis (PIABS), while it promoted leaf senescence, relative electrical conductivity (REC) and the contents of malondialdehyde (MDA) compared to a wild type under drought, heat and salt stress conditions of Arabidopsis plants. The silencing of its native homolog (AtHSFB2a) by RNA interference in Arabidopsis thaliana showed opposite trends by significantly increasing fresh and dry weights, RWC, maximum photosynthesis efficiency (Fv/Fm) and performance index on the absorption basis (PIABS) and reducing REC and MDA contents under drought, heat and salt stress conditions compared to wild type Arabidopsis plants. These phenotypic and physiological indicators suggested that the TrHSFB2a of white clover functions as a negative regulator of heat, salt and drought tolerance. The bioinformatics analysis showed that TrHSFB2a contained the core B3 repression domain (BRD) that has been reported as a repressor activator domain in other plant species that might repress the activation of the heat shock-inducible genes required in the stress tolerance process in plants. The present study explores one of the potential causes of drought and heat sensitivity in white clover that can be overcome to some extent by silencing the TrHSFB2a gene in white clover.


Assuntos
Arabidopsis , Trifolium , Secas , Arabidopsis/metabolismo , Trifolium/genética , Trifolium/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Estresse Salino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Medicago/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 47(6): 1611-1617, 2022 Mar.
Artigo em Zh | MEDLINE | ID: mdl-35347960

RESUMO

This study aimed to investigate the effects of geniposide(GP) on the expression of prokineticin(PK2) and prokineticin receptor 1(PKR1) in db/db mice with diabetic nephropathy(DN), so as to explore how the PK2 signaling pathway participated in the pathological changes of DN and whether GP exerted the therapeutic effect through this signaling pathway. Male mice were randomly divided into four groups, namely db/m, db/db, db/db+GP, and db/m+GP groups, with five in each group. The mice in the db/db+GP and db/m+GP groups were gavaged with 150 mg·kg~(-1) GP for eight successive weeks. Afterwards, all the mice were sacrificed and the renal tissues were embedded. The morphological changes in glomerulus and renal tubules were observed by Masson and PAS staining. The expression levels of PK2, PKR1, and Wilm's Tumor Protein 1(WT_1) in podocytes were detected by immunohistochemistry, and the protein expression levels of PK2 and PKR1 in mouse kidney by Western blot. The morphological results showed serious glomerular and tubular fibrosis(Masson), high glomerular and tubular injury score(PAS), increased glomerular mesangial matrix, thickened basement membrane, exfoliated brush border of renal tubules, decreased WT_1 in glomerular podocytes, and massive loss of podocytes in the db/db group. After administration with GP, the glomerular and tubular fibrosis was alleviated, accompanied by improved glomerular basement membrane and renal tubule brush edge, and up-regulated WT_1. As revealed by further protein detection, in the db/db group, the expression levels of PK2 and PKR1 and p-Akt/Akt ratio declined, whereas the ratio of Bax/Bcl-2 rose. Ho-wever, PKR2 and p-ERK/ERK ratio did not change significantly. After administration with GP, the PK2 and PKR1 expression was elevated, and p-Akt/Akt ratio was increased. There was no obvious change in PKR2, Bax/Bcl-2 ratio, or p-ERK/ERK ratio. All these have demonstrated that GP improves the renal damage in DN mice, and PK2/PKR1 signaling pathway may be involved in such protection, which has provided reference for clinical treatment of DN with GP.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Iridoides , Rim , Masculino , Camundongos , Transdução de Sinais
9.
Acta Pharmacol Sin ; 42(8): 1280-1287, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33536603

RESUMO

Epithelial-mesenchymal transition (EMT) enables dissemination of neoplastic cells and onset of distal metastasis of primary tumors. However, the regulatory mechanisms of EMT by microenvironmental factors such as transforming growth factor-ß (TGF-ß) remain largely unresolved. Protein tyrosine phosphatase L1 (PTPL1) is a non-receptor protein tyrosine phosphatase that plays a suppressive role in tumorigenesis of diverse tissues. In this study we investigated the role of PTPL1/PTPN13 in metastasis of lung cancer and the signaling pathways regulated by PTPL1 in terms of EMT of non-small cell lung cancer (NSCLC) cells. We showed that the expression of PTPL1 was significantly downregulated in cancerous tissues of 23 patients with NSCLC compared with adjacent normal tissues. PTPL1 expression was positively correlated with overall survival of NSCLC patients. Then we treated A549 cells in vitro with TGF-ß1 (10 ng/mL) and assessed EMT. We found that knockdown of PTPL1 enhanced the migration and invasion capabilities of A549 cells, through enhancing TGF-ß1-induced EMT. In nude mice bearing A549 cell xenografts, knockdown of PTPL1 significantly promoted homing of cells and formation of tumor loci in the lungs. We further revealed that PTPL1 suppressed TGF-ß-induced EMT by counteracting the activation of canonical Smad2/3 and non-canonical p38 MAPK signaling pathways. Using immunoprecipitation assay we demonstrated that PTPL1 could bind to p38 MAPK, suggesting that p38 MAPK might be a direct substrate of PTPL1. In conclusion, these results unravel novel mechanisms underlying the regulation of TGF-ß signaling pathway, and have implications for prognostic assessment and targeted therapy of metastatic lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919681

RESUMO

Accurate prediction of binding affinity between protein and ligand is a very important step in the field of drug discovery. Although there are many methods based on different assumptions and rules do exist, prediction performance of protein-ligand binding affinity is not satisfactory so far. This paper proposes a new cascade graph-based convolutional neural network architecture by dealing with non-Euclidean irregular data. We represent the molecule as a graph, and use a simple linear transformation to deal with the sparsity problem of the one-hot encoding of original data. The first stage adopts ARMA graph convolutional neural network to learn the characteristics of atomic space in the protein-ligand complex. In the second stage, one variant of the MPNN graph convolutional neural network is introduced with chemical bond information and interactive atomic features. Finally, the architecture passes through the global add pool and the fully connected layer, and outputs a constant value as the predicted binding affinity. Experiments on the PDBbind v2016 data set showed that our method is better than most of the current methods. Our method is also comparable to the state-of-the-art method on the data set, and is more intuitive and simple.


Assuntos
Redes Neurais de Computação , Proteínas/metabolismo , Bases de Dados de Proteínas , Ligantes , Modelos Teóricos , Ligação Proteica
11.
J Cell Biochem ; 121(1): 371-384, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31218737

RESUMO

BACKGROUND: Postoperative cognitive dysfunction (POCD) is one of the common postoperative complications, which is more common in aged patients. POCD mainly manifests as cognitive function changes after surgery, such as memory decline and inattention. In some severe cases, patients may suffer from personality changes and (or) social behavior decline. The aim of the current study is to confirm the effect and elucidate the mechanism of bone marrow mesenchymal stem cells (BMSCs) in postoperative central inflammatory mice. METHODS: Mice were randomly assigned to four groups: sham, sham+BMSCs, model, and BMSCs group. In the model group, mice were intraperitoneally injected 8 mg/kg per day lipopolysaccharide for 5 days. In sham+BMSCs and BMSCs group, BMSCs (1 × 10 7 ) in 100 µL saline were injected into sham mice and model mice, respectively. RESULTS: In the model group, transforming growth factor ß (TGF-ß) protein expression was significantly increased, compared with that in the sham group. BMSCs were treated into postoperative central inflammatory mice, which resulted in a decreased of TGF-ß protein expression. TGF-ß and smad2 protein expression were suppressed, and apoptosis rate and inflammation were inhibited in coculture with BMSCs. The suppression of TGF-ß inhibited the effects of BMSCs on apoptosis rate and inflammation in postoperative central inflammatory through a smad2 signaling pathway. The promotion of TGF-ß reduced the effects of BMSCs on apoptosis rate and inflammation in postoperative central inflammatory through a smad2 signaling pathway. CONCLUSION: The present study demonstrates that BMSCs regulates TGF-ß to adjust neuroinflammation in postoperative central inflammatory mice.


Assuntos
Inflamação/metabolismo , Células-Tronco Mesenquimais/citologia , Neurônios/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Apoptose , Comportamento Animal , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Lipopolissacarídeos/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Período Pós-Operatório , Transdução de Sinais , Proteína Smad2/metabolismo
12.
Plant Cell Physiol ; 61(9): 1576-1589, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32544243

RESUMO

Spermine (Spm) regulates water balance involved in water channel proteins, aquaporins (AQPs), in plants. An increase in endogenous Spm content via exogenous Spm application significantly improved cell membrane stability, photosynthesis, osmotic adjustment (OA) and water use efficiency (WUE) contributing to enhanced tolerance to water stress in white clover. Spm upregulated TrTIP2-1, TrTIP2-2 and TrPIP2-7 expressions and also increased the abundance of TIP2 and PIP2-7 proteins in white clover under water stress. Spm quickly activated intracellular Ca2+ signaling and Spm-induced TrTIP2-2 and TrPIP2-7 expressions could be blocked by Ca2+ channel blockers and the inhibitor of Ca2+-dependent protein kinase in leaves of white clover. TrSAMS in relation to Spm biosynthesis was first cloned from white clover and the TrSAMS was located in the nucleus. Transgenic Arabidopsis overexpressing the TrSAMS had significantly higher endogenous Spm content and improved cell membrane stability, photosynthesis, OA, WUE and transcript levels of AtSIP1-1, AtSIP1-2, AtTIP2-1, AtTIP2-2, AtPIP1-2, AtPIP2-1 and AtNIP2-1 than wild type in response to water stress. Current findings indicate that Spm regulates water balance via an enhancement in OA, WUE and water transport related to Ca2+-dependent AQP expression in plants under water stress.


Assuntos
Aquaporina 2/metabolismo , Proteínas de Plantas/metabolismo , Espermina/fisiologia , Aquaporina 2/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Clonagem Molecular , Desidratação , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Espermina/metabolismo , Trifolium/metabolismo , Trifolium/fisiologia , Água/metabolismo
13.
BMC Plant Biol ; 20(1): 150, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32268884

RESUMO

BACKGROUND: Auxin may have a positive effect on plants under drought stress. White clover is widely cultivated and often prone to water shortages. In the present study, we investigated the effects of exogenous indole - 3-acetic acid (IAA) on growth and physiological changes of white clover under drought stress condition. The contents of endogenous IAA and other hormones including ABA, CTK, JA, GA, IAA, and SA were assayed. Moreover, expressions of auxin-responsive genes, drought-responsive genes and leaf senescence-associated genes were detected in response to exogenous IAA. RESULTS: Compared to control, drought stress alone significantly diminished stem dry weigh, relative water content (RWC) and total chlorophyll content (Chl). Exogenous IAA treatment significantly increased RWC and Chl, whereas L-AOPP treatment drastically decreased stem dry weight, RWC and Chl under drought stress condition. Additionally, exogenous IAA treatment significantly increased ABA content and JA content, up-regulated expression of auxin responsive genes (GH3.1, GH3.9, IAA8), drought stress responsive genes (bZIP11, DREB2, MYB14, MYB48, WRKY2, WRKY56, WRKY108715 and RD22), and down-regulated expressions of auxin-responding genes (GH3.3, GH3.6, IAA27) and leaf senescence genes (SAG101 and SAG102) in the presence of PEG. Contrarily, L-AOPP treatment significantly reduced contents of ABA, GA3 and JA, down-regulated expressions of GH3.1, GH3.9, IAA8, bZIP11, DREB2, MYB14, MYB48, WRKY2, WRKY56, WRKY108715, ERD and RD22, and up-regulated SAG101 and SAG102. CONCLUSIONS: Exogenous IAA improved drought tolerance of white clover possibly due to endogenous plant hormone concentration changes and modulation of genes involving in drought stress response and leaf senescence. These results provided useful information to understand mechanisms of IAA improved drought tolerance in white clover.


Assuntos
Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Trifolium/metabolismo , Ácido Abscísico/metabolismo , Senescência Celular/genética , Ciclopentanos/metabolismo , Citocininas/metabolismo , Secas , Giberelinas/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Trifolium/genética , Água/fisiologia
14.
Acta Pharmacol Sin ; 41(8): 1102-1110, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32152438

RESUMO

Endothelial-mesenchymal transition (EnMT) plays a pivotal role in various diseases, including pulmonary hypertension (PH), and transcription factors like Snail are key regulators of EnMT. In this study we investigated how these factors were regulated by PH risk factors (e.g. inflammation and hypoxia) in human umbilical vein endothelial cells (HUVECs). We showed that treatment with interleukin 1ß (IL-1ß) induced EnMT of HUVECs via activation of NF-κB/Snail pathway, which was further exacerbated by knockdown of protein tyrosine phosphatase L1 (PTPL1). We demonstrated that PTPL1 inhibited NF-κB/Snail through dephosphorylating and stabilizing IκBα. IL-1ß or hypoxia could downregulate PTPL1 expression in HUVECs. The deregulation of PTPL1/NF-κB signaling was validated in a monocrotaline-induced rat PH (MCT-PH) model and clinical PH specimens. Our findings provide novel insights into the regulatory mechanisms of EnMT, and have implications for identifying new therapeutic targets for clinical PH.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Interleucina-1beta/farmacologia , Subunidade p50 de NF-kappa B/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 13/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição da Família Snail/metabolismo , Animais , Transdiferenciação Celular/fisiologia , Regulação para Baixo , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/fisiopatologia , Interleucina-1beta/metabolismo , Masculino , Monocrotalina , Inibidor de NF-kappaB alfa/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , Ratos Sprague-Dawley
15.
Int J Mol Sci ; 21(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050389

RESUMO

γ-Aminobutyric acid (GABA) plays an important role in regulating stress tolerance in plants. Purposes of this study was to determine the effect of an exogenous supply of GABA on tolerance to water stress in creeping bentgrass (Agrostis stolonifera), and further reveal the GABA-induced key mechanisms related to water balance, nitrogen (N) metabolism and nitric oxide (NO) production in response to water stress. Plants were pretreated with or without 0.5 mM GABA solution in the roots for 3 days, and then subjected to water stress induced by -0.52 MPa polyethylene glycol 6000 for 12 days. The results showed that water stress caused leaf water deficit, chlorophyll (Chl) loss, oxidative damage (increases in superoxide anion, hydrogen peroxide, malondialdehyde, and protein carbonyl content), N insufficiency, and metabolic disturbance. However, the exogenous addition of GABA significantly increased endogenous GABA content, osmotic adjustment and antioxidant enzyme activities (superoxide dismutase, catalase, dehydroascorbate reductase, glutathione reductase and monodehydroascorbate reductase), followed by effectively alleviating water stress damage, including declines in oxidative damage, photoinhibition, and water and Chl loss. GABA supply not only provided more available N, but also affected N metabolism through activating nitrite reductase and glutamine synthetase activities under water stress. The supply of GABA did not increase glutamate content and glutamate decarboxylase activity, but enhanced glutamate dehydrogenase activity, which might indicate that GABA promoted the conversion and utilization of glutamate for maintaining Chl synthesis and tricarboxylic acid cycle when creeping bentgrass underwent water stress. In addition, GABA-induced NO production, depending on nitrate reductase and NO-associated protein pathways, could be associated with the enhancement of antioxidant defense. Current findings reveal the critical role of GABA in regulating signal transduction and metabolic homeostasis in plants under water-limited condition.


Assuntos
Agrostis/fisiologia , Secas , Óxido Nítrico/metabolismo , Nitrogênio/metabolismo , Transdução de Sinais , Estresse Fisiológico , Água/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adaptação Biológica , Estresse Oxidativo
16.
Acta Pharmacol Sin ; 40(10): 1322-1333, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31316183

RESUMO

Abnormal wound healing by pulmonary artery smooth muscle cells (PASMCs) promotes vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Increasing evidence shows that both the mammalian target of rapamycin complex 1 (mTORC1) and nuclear factor-kappa B (NF-κB) are involved in the development of HPH. In this study, we explored the crosstalk between mTORC1 and NF-κB in PASMCs cultured under hypoxic condition and in a rat model of hypoxia-induced pulmonary hypertension (HPH). We showed that hypoxia promoted wound healing of PASMCs, which was dose-dependently blocked by the mTORC1 inhibitor rapamycin (5-20 nM). In PASMCs, hypoxia activated mTORC1, which in turn promoted the phosphorylation of NF-κB. Molecular docking revealed that mTOR interacted with IκB kinases (IKKs) and that was validated by immunoprecipitation. In vitro kinase assays and mass spectrometry demonstrated that mTOR phosphorylated IKKα and IKKß separately. Inhibition of mTORC1 decreased the level of phosphorylated IKKα/ß, thus reducing the phosphorylation and transcriptional activity of NF-κB. Bioinformatics study revealed that dipeptidyl peptidase-4 (DPP4) was a target gene of NF-κB; DPP4 inhibitor, sitagliptin (10-500 µM) effectively inhibited the abnormal wound healing of PASMCs under hypoxic condition. In the rat model of HPH, we showed that NF-κB activation (at 3 weeks) was preceded by mTOR signaling activation (after 1 or 2 weeks) in lungs, and administration of sitagliptin (1-5 mg/kg every day, ig) produced preventive effects against the development of HPH. In conclusion, hypoxia activates the crosstalk between mTORC1 and NF-κB, and increased DPP4 expression in PASMCs that leads to vascular remodeling. Sitagliptin, a DPP4 inhibitor, exerts preventive effect against HPH.


Assuntos
Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Administração Oral , Animais , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Biologia Computacional , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Inibidores da Dipeptidil Peptidase IV/farmacologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , NF-kappa B/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fosfato de Sitagliptina/administração & dosagem , Fosfato de Sitagliptina/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Cicatrização/efeitos dos fármacos
17.
Metab Brain Dis ; 34(5): 1375-1384, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31236807

RESUMO

Hypidone hydrochloride (YL-0919), is a novel structural antidepressant candidate as a triple selective serotonin re-uptake inhibitor (SSRI), 5-HT1A partial agonist and 5-HT6 agonist. Here, we investigated the rapid onset antidepressant-like effects of YL-0919 and the possible mechanism in rats exposed to a chronic unpredictable stress (CUS) paradigm. In the CUS rats, it was found that fluoxetine (FLX, 10 mg/kg) treatment exerted antidepressant actions on 20-22d, while YL-0919 or vilazodone (VLZ, a dual 5-HT1A partial agonist and SSRI) administrated once daily exerted faster antidepressant-like behaviors [4 days in the sucrose preference test (SPT) and 6 days in the novelty suppressed feeding test (NSF)]. Thereafter, the serum corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels were reversed by treatment with YL-0919 for 7 days. Furthermore, YL-0919 treatment for 5 days reversed the brain derived neurotrophic factor (BDNF)-mammalian target of rapamycin (mTOR) signaling and the key synaptic proteins, such as post-synaptic density (PSD95), GluR1 and presynaptic protein synapsin1. Meanwhile, the dendritic complexity of pyramidal neurons in prefrontal cortex (PFC) were also increased in the CUS rats. These data suggest that YL-0919 exerts a faster antidepressant-like effect on behaviors and this effect maybe at least partially mediated by the BDNF-mTOR signaling related dendritic complexity increase in the PFC.


Assuntos
Antidepressivos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Ingestão de Alimentos/efeitos dos fármacos , Piperidinas/uso terapêutico , Piridonas/uso terapêutico , Animais , Antidepressivos/farmacologia , Depressão/metabolismo , Modelos Animais de Doenças , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Masculino , Piperidinas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Piridonas/farmacologia , Ratos , Ratos Wistar , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Estresse Psicológico/metabolismo , Fatores de Tempo
18.
J Neuroinflammation ; 15(1): 176, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29879988

RESUMO

BACKGROUND: Diabetic neuropathic pain (DNP) is a common and distressing complication in patients with diabetes, and the underlying mechanism remains unclear. Tricyclic antidepressants (TCAs) and serotonin and norepinephrine reuptake inhibitors (SNRIs) are recommended as first-line drugs for DNP. Ammoxetine is a novel and potent SNRI that exhibited a strong analgesic effect on models of neuropathic pain, fibromyalgia-related pain, and inflammatory pain in our primary study. The present study was undertaken to investigate the chronic treatment properties of ammoxetine on DNP and the underlying mechanisms for its effects. METHODS: The rat model of DNP was established by a single streptozocin (STZ) injection (60 mg/kg). Two weeks after STZ injection, the DNP rats were treated with ammoxetine (2.5, 5, and 10 mg/kg/day) for 4 weeks. The mechanical allodynia and locomotor activity were assayed to evaluate the therapeutic effect of ammoxetine. In mechanism study, the activation of microglia, astrocytes, the protein levels of pro-inflammatory cytokines, the mitogen-activated protein kinases (MAPK), and NF-κB were evaluated. Also, microglia culture was used to assess the direct effects of ammoxetine on microglial activation and the signal transduction mechanism. RESULTS: Treatment with ammoxetine for 4 weeks significantly relieved the mechanical allodynia and ameliorated depressive-like behavior in DNP rats. In addition, DNP rats displayed increased activation of microglia in the spinal cord, but not astrocytes. Ammoxetine reduced the microglial activation, accumulation of pro-inflammatory cytokines, and activation of p38 and c-Jun N-terminal kinase (JNK) in the spinal cord of DNP rats. Furthermore, ammoxetine displayed anti-inflammatory effects upon challenge with LPS in BV-2 microglia cells. CONCLUSION: Our results suggest that ammoxetine may be an effective treatment for relieving DNP symptoms. Moreover, a reduction in microglial activation and pro-inflammatory release by inhibiting the p-p38 and p-JNK pathways is involved in the mechanism.


Assuntos
Benzodioxóis/uso terapêutico , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Microglia/efeitos dos fármacos , Mielite , Propilaminas/uso terapêutico , Animais , Benzodioxóis/química , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Transformada , Neuropatias Diabéticas/induzido quimicamente , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Cloridrato de Duloxetina/uso terapêutico , Comportamento Exploratório/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Hipoglicemiantes/química , Lipopolissacarídeos/farmacologia , Locomoção/efeitos dos fármacos , Proteínas dos Microfilamentos/metabolismo , Mielite/tratamento farmacológico , Mielite/etiologia , Mielite/patologia , Propilaminas/química , Ratos , Estreptozocina/toxicidade
19.
BMC Pulm Med ; 18(1): 13, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29361925

RESUMO

BACKGROUND: Crizotinib is recommended as first-line therapy in ROS1-driven lung adenocarcinoma. However, the optimal first-line therapy for this subgroup of lung cancer is controversial according to the available clinical data. CASE PRESENTATION: Here, we describe a 57-year-old man who was diagnosed with stage IIIB lung adenocarcinoma and EGFR/KRAS/ALK-negative tumors. The patient received six cycles of pemetrexed plus cisplatin as first-line therapy and then pemetrexed as maintenance treatment, with a progression-free survival (PFS) of 42 months. The patient relapsed and underwent re-biopsy. EZR-ROS1 fusion mutation was detected by next-generation sequencing (NGS). The patient was prescribed crizotinib as second-line therapy and achieved a PFS of 6 months. After disease progression, lorlatinib was administered as third-line therapy, with a favorable response. CONCLUSIONS: Prolonged PFS in patients receiving pemetrexed chemotherapy might be related to the EZR-ROS1 fusion mutation. Lorlatinib is an optimal choice in patients showing crizotinib resistance.


Assuntos
Adenocarcinoma/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas do Citoesqueleto/genética , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Aminopiridinas , Antineoplásicos/uso terapêutico , Cisplatino/administração & dosagem , Crizotinibe/uso terapêutico , Rearranjo Gênico , Humanos , Lactamas , Lactamas Macrocíclicas/uso terapêutico , Masculino , Pessoa de Meia-Idade , Fusão Oncogênica , Pemetrexede/administração & dosagem , Intervalo Livre de Progressão , Pirazóis , Fatores de Tempo
20.
Sensors (Basel) ; 18(12)2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30558327

RESUMO

Tactility is an essential perception for intelligent equipment to acquire external information. It can improve safety and performance during human-machine interactions. Based on the uniqueness theorem of the electrostatic field, a novel flexible film tactile sensor that can detect contact position and be made into any plane shape is proposed in this paper. The tactile sensor included an indium tin oxide (ITO) film, which was uniformly coated on the polyethylene terephthalate (PET) substrate. A specially designed strong conductive line was arranged along the edge of the flexible ITO film, which has weak conductivity. A bias excitation was applied to both ends of the strong conductive line. Through the control of the shape of the strong conductive line, a uniform electric field can be constructed in the whole weak conductive plane. According to the linear relationship between position and potential in the uniform electric field, the coordinate of the contact position can be determined by obtaining the potential of the contact point in the weak conducting plane. The sensor uses a three-layer structure, including an upper conductive layer, an intermediate isolation layer, and a lower conductive layer. A tactile sensor sample was fabricated. The experiment results showed that the principle of the tactile sensor used for the contact position detection is feasible and has certain precision of position detection. The sensor has good flexibility, and can be made into any plane shape, and has only four wires. It is capable of covering large areas of robot arms, and provides safety solutions for most robots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA