Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Am Chem Soc ; 146(6): 4112-4122, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38226918

RESUMO

Lipoarabinomannan (LAM) from the Mycobacterium tuberculosis cell envelope represents important targets for the development of new therapeutic agents against tuberculosis, which is a deadly disease that has plagued mankind for a long time. However, the accessibility of long, branched, and complex lipoarabinomannan over 100-mer remains a long-standing challenge. Herein, we report the modular synthesis of mannose-capped lipoarabinomannan 101-mer from the M. tuberculosis cell wall using a one-pot assembly strategy on the basis of glycosyl ortho-(1-phenylvinyl)benzoates (PVB), which not only accelerates the modular synthesis but also precludes the potential problems associated with one-pot glycosylation with thioglycosides. Shorter sequences including 18-mer, 19-mer, and 27-mer are also synthesized for in-depth structure-activity relationship biological studies. Current synthetic routes also highlight the following features: (1) streamlined synthesis of various linear and branched glycans using one-pot orthogonal glycosylation on the combination of glycosyl N-phenyltrifluoroacetimidates, glycosyl ortho-alkynylbenzoates, and glycosyl PVB; (2) highly stereoselective construction of 10 1,2-cis-arabinofuranosyl linkages using 5-O-(2-quinolinecarbonyl)-directing 1,2-cis-arabinofuranosylation via a hydrogen-bond-mediated aglycone delivery strategy; and (3) convergent [(18 + 19) × 2 + 27] one-pot synthesis of the 101-mer LAM polysaccharide. The present work demonstrates that this orthogonal one-pot glycosylation strategy can highly streamline the chemical synthesis of long, branched, and complex polysaccharides.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Manose , Lipopolissacarídeos , Polissacarídeos , Parede Celular
2.
Angew Chem Int Ed Engl ; 62(22): e202301351, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36867119

RESUMO

Lipopolysaccharides from Bacteroides vulgatus represent interesting targets for the treatment of inflammatory bowel diseases. However, efficient access to long, branched and complex lipopolysaccharides remains challenging. Herein, we report the modular synthesis of a tridecasaccharide from Bacteroides vulgates through an orthogonal one-pot glycosylation strategy based on glycosyl ortho-(1-phenylvinyl)benzoates, which avoids the issues of thioglycoside-based one-pot synthesis. Our approach also features: 1) 5,7-O-di-tert-butylsilylene-directed glycosylation for stereoselective construction of the α-Kdo linkage; 2) hydrogen-bond-mediated aglycone delivery for the stereoselective formation of ß-mannosidic bonds; 3) remote anchimeric assistance for stereoselective assembly of the α-fucosyl linkage; 4) several orthogonal one-pot synthetic steps and strategic use of orthogonal protecting groups to streamline oligosaccharide assembly; 5) convergent [1+6+6] one-pot synthesis of the target.


Assuntos
Doenças Inflamatórias Intestinais , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/química , Glicosilação , Oligossacarídeos/química , Bacteroides
3.
Org Biomol Chem ; 20(34): 6755-6758, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35971976

RESUMO

The efficient and collective synthesis of rhynchosporosides causing scald diseases has been achieved, which features orthogonal one-pot glycosylation on the basis of PTFAI glycosylation, Yu glycosylation, and PVB glycosylation and merging reagent modulation and remote anchimeric assistance (RMRAA) α-glucosylation strategies. The issues inherent to the thioglycoside-based orthogonal one-pot glycosylation strategy, such as aglycone transfer, have been precluded by this orthogonal one-pot glycosylation strategy, which can streamline glycan chemical synthesis.


Assuntos
Oligossacarídeos , Polissacarídeos , Glicosilação , Estereoisomerismo
4.
Angew Chem Int Ed Engl ; 61(14): e202116983, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35084798

RESUMO

Stimuli-responsive nanoagents, which simultaneously satisfy normal tissue clearance and tumor-specific responsive treatment, are highly attractive for precise cancer theranostics. Herein, we develop a unique template-induced self-assembly strategy for the exquisitely controlled synthesis of self-assembled lanthanide (Ln3+ ) nucleotide nanoparticles (LNNPs) with amorphous structure and tunable size from sub-5 nm to 105 nm. By virtue of the low-temperature (10 K) and high-resolution spectroscopy, the local site symmetry of Ln3+ in LNNPs is unraveled for the first time. The proposed LNNPs are further demonstrated to possess the ability for highly efficient loading and tumor-microenvironment-responsive release of doxorubicin. Particularly, sub-5 nm LNNPs not only exhibit excellent biocompatibility and predominant renal-clearance performance, but also enable efficient tumor retention. These findings reveal the great potential of LNNPs as a new generation of therapeutic platform to overcome the dilemma between efficient therapy and long-term toxicity of nanoagents for future clinical applications.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Nucleotídeos , Microambiente Tumoral
5.
Angew Chem Int Ed Engl ; 60(22): 12597-12606, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33763930

RESUMO

The efficient synthesis of long, branched, and complex carbohydrates containing multiple 1,2-cis glycosidic linkages is a long-standing challenge. Here, we report a merging reagent modulation and 6-O-levulinoyl remote anchimeric assistance glycosylation strategy, which is successfully applied to the first highly stereoselective synthesis of the branched Dendrobium Huoshanense glycans and the linear Longan glycans containing up to 30 contiguous 1,2-cis glucosidic bonds. DFT calculations shed light on the origin of the much higher stereoselectivities of 1,2-cis glucosylation with 6-O-levulinoyl group than 6-O-acetyl or 6-O-benzoyl groups. Orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates and ortho-(1-phenylvinyl)benzoates has been demonstrated in the efficient synthesis of complex glycans, precluding such issues as aglycon transfer inherent to orthogonal one-pot synthesis based on thioglycosides.

6.
Angew Chem Int Ed Engl ; 60(17): 9693-9698, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33543555

RESUMO

Herein, we report the design of novel ultraviolet luminescent CsPbCl3 nanocrystals (NCs) with the emission peak at 381 nm through doping of cadmium ions. Subsequently, a surface passivation strategy with CdCl2 is adopted to improve their photoluminescence quantum yield (PLQY) with the maximum value of 60.5 %, which is 67 times higher than that of the pristine counterparts. The PLQY of the surface passivated NCs remains over 50 % after one week while the pristine NCs show negligible emission. By virtue of density functional theory calculations, we reveal that the higher PLQY and better stability after surface passivation may result from the significant elimination of surface chloride vacancy (VCl ) defects. These findings provide fundamental insights into the optical manipulation of metal ion-doped CsPbCl3 NCs.

7.
Angew Chem Int Ed Engl ; 59(19): 7576-7584, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086860

RESUMO

The synthesis of long, branched, and complex carbohydrate sequences remains a challenging task in chemical synthesis. Reported here is an efficient and modular one-pot synthesis of a nona-decasaccharide and shorter sequences from Psidium guajava polysaccharides, which have the potent α-glucosidase inhibitory activity. The synthetic strategy features: 1) several one-pot glycosylation reactions on the basis of N-phenyltrifluoroacetimidate (PTFAI) and Yu glycosylation to streamline the chemical synthesis of oligosaccharides, 2) the successful and efficient assembly sequences (first O3', second O5', final O2') toward the challenging 2,3,5-branched Araf motif, 3) the stereoselective 1,2-cis-glucosylation by reagent control, and 4) the convergent [6+6+7] one-pot coupling reaction for the final assembly of the target nona-decasaccharide. This orthogonal one-pot glycosylation strategy can streamline the chemical synthesis of long, branched, and complicated carbohydrate chains.


Assuntos
Polissacarídeos/síntese química , Psidium/química , Sequência de Carboidratos , Glicosilação , Indicadores e Reagentes , Estrutura Molecular , Oligossacarídeos/síntese química , Estereoisomerismo
8.
Angew Chem Int Ed Engl ; 58(21): 6943-6947, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30916372

RESUMO

Applications of persistent luminescence phosphors as night or dark-light vision materials in many technological fields have fueled up a growing demand for rational control over the emission profiles of the phosphors. This, however, remains a daunting challenge. Now a unique strategy is reported to fine-tune the persistent luminescence by using all-inorganic CsPbX3 (X=Cl, Br, and I) perovskite quantum dots (PeQDs) as efficient light-conversion materials. Full-spectrum persistent luminescence with wavelengths covering the entire visible spectral region is achieved through tailoring of the PeQD band gap, in parallel with narrow bandwidth of PeQDs and highly synchronized afterglow decay owing to the single energy storage source. These findings break through the limitations of traditional afterglow phosphors, thereby opening up opportunities for persistent luminescence materials for applications such as a white-emitting persistent light source and dark-light multicolor displays.

9.
Plant Physiol ; 172(2): 1306-1323, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27578551

RESUMO

Cold acclimation is an important process by which plants respond to low temperature and enhance their winter hardiness. C-REPEAT BINDING FACTOR1 (CBF1), CBF2, and CBF3 genes were shown previously to participate in cold acclimation in Medicago truncatula In addition, MtCBF4 is transcriptionally induced by salt, drought, and cold stresses. We show here that MtCBF4, shown previously to enhance drought and salt tolerance, also positively regulates cold acclimation and freezing tolerance. To identify molecular factors acting upstream and downstream of the MtCBF4 transcription factor (TF) in cold responses, we first identified genes that are differentially regulated upon MtCBF4 overexpression using RNAseq Digital Gene Expression Profiling. Among these, we showed that MtCBF4 directly activates the transcription of the COLD ACCLIMATION SPECIFIC15 (MtCAS15) gene. To gain insights into how MtCBF4 is transcriptionally regulated in response to cold, an R2R3-MYB TF, MtMYB3, was identified based on a yeast one-hybrid screen as binding directly to MYB cis-elements in the MtCBF4 promoter, leading to the inhibition of MtCBF4 expression. In addition, another MYB TF, MtMYB61, identified as an interactor of MtMYB3, can relieve the inhibitory effect of MtMYB3 on MtCBF4 transcription. This study, therefore, supports a model describing how MtCBF4 is regulated by antagonistic MtMYB3/MtMYB61 TFs, leading to the up-regulation of downstream targets such as MtCAS15 acting in cold acclimation in M. truncatula.


Assuntos
Aclimatação/genética , Congelamento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Bases , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
10.
Plants (Basel) ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38674492

RESUMO

Two important traits of Chinese cabbage, internode length and budding time, destroy the maintenance of rosette leaves in the vegetative growth stage and affect flowering in the reproductive growth stage. Internodes have received much attention and research in rice due to their effect on lodging resistance, but they are rarely studied in Chinese cabbage. In Chinese cabbage, internode elongation affects not only the maintenance of rosette leaves but also bolting and yield. Budding is also an important characteristic of Chinese cabbage entering reproductive growth. Although many studies have reported on flowering and bolting, studies on bud emergence and the timing of budding are scarce. In this study, the mutant lcc induced by EMS (Ethyl Methane Sulfonate) was used to study internode elongation in the seedling stage and late budding in the budding stage. By comparing the gene expression patterns of mutant lcc and wild-type A03, 2280 differentially expressed genes were identified in the seedling stage, 714 differentially expressed genes were identified in the early budding stage, and 1052 differentially expressed genes were identified in the budding stage. Here, the transcript expression patterns of genes in the plant hormone signaling and clock rhythm pathways were investigated in relation to the regulation of internode elongation and budding in Chinese cabbage. In addition, an F2 population was constructed with the mutants lcc and R500. A high-density genetic map with 1602 marker loci was created, and QTLs for internode length and budding time were identified. Specifically, five QTLs for internode length and five QTLs for budding time were obtained. According to transcriptome data analysis, the internode length candidate gene BraA02g005840.3C (PIN8) and budding time candidate genes BraA02g003870.3C (HY5-1) and BraA02g005190.3C (CHS-1) were identified. These findings provide insight into the regulation of internode length and budding time in Chinese cabbage.

11.
Chem Sci ; 15(17): 6552-6561, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699257

RESUMO

Mucin-related tumor-associated carbohydrate antigens (TACAs) are important and interesting targets for cancer vaccine therapy. However, efficient access to a library of mucin-related TACAs remains a challenging task. One of the key issues is the challenging construction of α-GalNAc linkages. Here, we report highly stereoselective α-glycosylation with GalN3N-phenyl trifluoroacetimidate donors, which features excellent yields, outstanding stereoselectivities, broad substrate scope and mild reaction conditions. This method is successfully applied to highly stereoselective synthesis of GalN3-α-O-Ser, which served as the common intermediate for collective synthesis of a wide range of TACAs including TN antigen, STN antigen, 2,6 STF antigen, 2,3 STF antigen, glycophorin and cores 1-8 mucin-type O-glycans. In particular, the rationale for this highly stereoselective α-glycosylation is provided for the first time using DFT calculations and mechanistic studies, highlighting the crucial roles of reagent combinations (TMSI and Ph3PO) and the H-bonding directing effect of the N3 group.

12.
JACS Au ; 4(2): 697-712, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425910

RESUMO

The evaluation of Bacteroides vulgatus mpk (BVMPK) lipopolysaccharide (LPS) recognition by DC-SIGN, a key lectin in mediating immune homeostasis, has been here performed. A fine chemical dissection of BVMPK LPS components, attained by synthetic chemistry combined to spectroscopic, biophysical, and computational techniques, allowed to finely map the LPS epitopes recognized by DC-SIGN. Our findings reveal BVMPK's role in immune modulation via DC-SIGN, targeting both the LPS O-antigen and the core oligosaccharide. Furthermore, when framed within medical chemistry or drug design, our results could lead to the development of tailored molecules to benefit the hosts dealing with inflammatory diseases.

13.
New Phytol ; 195(1): 124-35, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22510066

RESUMO

• Dehydrins are a type of late embryogenesis abundant protein. Some dehydrins are involved in the response to various abiotic stresses. Accumulation of dehydrins enhances the drought, cold and salt tolerances of transgenic plants, although the underlying mechanism is unclear. MtCAS31 (Medicago Truncatula cold-acclimation specific protein 31) is a Y(2)K(4)-type dehydrin that was isolated from Medicago truncatula. • We analyzed the subcellular and histochemical localization of MtCAS31, and the expression patterns of MtCAS31 under different stresses. Transgenic Arabidopsis that overexpressed MtCAS31 was used to determine the function of MtCAS31. A yeast two-hybrid assay was used to screen potential proteins that could interact with MtCAS31. The interaction was confirmed by bimolecular fluorescence complementation (BiFC) assay. • After a 3-h drought treatment, the expression of MtCAS31 significantly increased 600-fold. MtCAS31 overexpression dramatically reduced stomatal density and markedly enhanced the drought tolerance of transgenic Arabidopsis. MtCAS31 could interact with AtICE1 (inducer of CBF expression 1) and the AtICE1 homologous protein Mt7g083900.1, which was identified from Medicago truncatula both in vitro and in vivo. • Our findings demonstrate that a dehydrin induces decreased stomatal density. Most importantly, the interaction of MtCAS31 with AtICE1 plays a role in stomatal development. We hypothesize that the interaction of MtCAS31 and AtICE1 caused the decrease in stomatal density to enhance the drought resistance of transgenic Arabidopsis.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética , Estômatos de Plantas/fisiologia , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Chem Sci ; 13(26): 7755-7764, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35865907

RESUMO

The accessibility to long, branched and complex glycans containing many 1,2-cis glycosidic linkages with precise structures remains a challenging task in chemical synthesis. Reported here is an efficient, stereoselective and orthogonal one-pot synthesis of a tetradecasaccharide and shorter sequences from Lentinus giganteus polysaccharides with antitumor activities. The synthetic strategy consists of: (1) newly developed merging reagent modulation and remote anchimeric assistance (RMRAA) α-(1→6)-galactosylation in a highly stereoselective manner, (2) DMF-modulated stereoselective α-(1→3)-glucosylation, (3) RMRAA stereoselective α-(1→6)-glucosylation, (4) several orthogonal one-pot glycosylations on the basis of N-phenyltrifluoroacetimidate (PTFAI) glycosylation, Yu glycosylation and ortho-(1-phenylvinyl)benzoate (PVB) glycosylation to streamline oligosaccharide synthesis, and (5) convergent [7 + 7] glycosylation for the final assembly of the target tetradecasaccharide. In particular, this new RMRAA α-galactosylation method has mild reaction conditions, broad substrate scopes and significantly shortened step counts for the heptasaccharide synthesis in comparison with 4,6-di-tert-butylsilyene (DTBS) directed α-galactosylation. Furthermore, DFT calculations shed light on the origins of remote anchimeric assistance effects (3,4-OBz > 3,4-OAc > 4-OBz > 3-OBz) of acyl groups.

15.
Adv Sci (Weinh) ; 9(32): e2203735, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36180418

RESUMO

Lanthanide ion (Ln3+ )-doped halide double perovskites (DPs) have evoked tremendous interest due to their unique optical properties. However, Ln3+ ions in these DPs still suffer from weak emissions due to their parity-forbidden 4f-4f electronic transitions. Herein, the local electronic structure of Ln3+ -doped Cs2 NaInCl6 DPs is unveiled. Benefiting from the localized electrons of [YbCl6 ]3- octahedron in Cs2 NaInCl6 DPs, an efficient strategy of Cl- -Yb3+ charge transfer sensitization is proposed to obtain intense near-infrared (NIR) luminescence of Ln3+ . NIR photoluminescence (PL) quantum yield (QY) up to 39.4% of Yb3+ in Cs2 NaInCl6 is achieved, which is more than three orders of magnitude higher than that (0.1%) in the well-established Cs2 AgInCl6 via conventional self-trapped excitons sensitization. Density functional theory calculation and Bader charge analysis indicate that the [YbCl6 ]3- octahedron is strongly localized in Cs2 NaInCl6 :Yb3+ , which facilitates the Cl- -Yb3+ charge transfer process. The Cl- -Yb3+ charge transfer sensitization mechanism in Cs2 NaInCl6 :Yb3+ is further verified by temperature-dependent steady-state and transient PL spectra. Furthermore, efficient NIR emission of Er3+ with the NIR PLQY of 7.9% via the Cl- -Yb3+ charge transfer sensitization is realized. These findings provide fundamental insights into the optical manipulation of Ln3+ -doped halide DPs, thus laying a foundation for the future design of efficient NIR-emitting DPs.

16.
BMC Plant Biol ; 11: 109, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21718548

RESUMO

BACKGROUND: Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. RESULTS: A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. CONCLUSION: Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants.


Assuntos
Medicago truncatula/genética , Medicago truncatula/metabolismo , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Aclimatação/efeitos dos fármacos , Aclimatação/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/efeitos dos fármacos , Filogenia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
iScience ; 24(2): 102062, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33604522

RESUMO

Luminescent biosensing in the second near-infrared window (NIR-II, 1000-1700 nm) region, which has weak tissue scattering and low autofluorescence, draws extensive attention owing to its deep tissue penetration, good spatial resolution and high signal-to-background ratio. As a new generation of NIR-II probes, lanthanide (Ln3+)-containing nanoprobes exhibit several superior properties. With the rapid development of Ln3+-containing NIR-II nanoprobes, many significant advances have been accomplished in their optical properties tuning and surface functional modification for further bioapplications. Rather than being exhaustive, this review aims to survey the recent advances in the design strategies of inorganic Ln3+-containing NIR-II luminescent nanoprobes by highlighting their optical performance optimization and surface modification approaches. Moreover, challenges and opportunities for this kind of novel NIR-II nanoprobes are envisioned.

18.
Adv Sci (Weinh) ; 8(5): 2002657, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717839

RESUMO

The point-of-care detection of tumor markers in saliva with high sensitivity and specificity remains a daunting challenge in biomedical research and clinical applications. Herein, a facile and ultrasensitive detection of tumor marker in saliva based on luminescence-amplification strategy of lanthanide nanoprobes is proposed. Eu2O3 nanocrystals are employed as bioprobes, which can be easily dissolved in acidic enhancer solution and transform into a large number of highly luminescent Eu3+ micelles. Meanwhile, disposable syringe filter equipped with nitrocellulose membrane is used as bioassay platform, which facilitates the accomplishment of detection process within 10 min. The rational integration of dissolution enhanced luminescent bioassay strategy and miniaturized detection device enables the unique lab-in-syringe assay of tumor marker like carcinoembryonic antigen (CEA, an important tumor marker in clinic diagnosis and prognosis of cancer) with a detection limit down to 1.47 pg mL-1 (7.35 × 10-15 m). Upon illumination with a portable UV flashlight, the photoluminescence intensity change above 0.1 ng mL-1 (0.5 × 10-12 m) of CEA can be visually detected by naked eyes, which allows one to qualitatively evaluate the CEA level. Moreover, we confirm the reliability of using the amplified luminescence of Eu2O3 nanoprobes for direct quantitation of CEA in patient saliva samples, thus validates the practicality of the proposed strategy for both clinical diagnosis and home self-monitoring of tumor marker in human saliva.

19.
Chem Sci ; 12(14): 5143-5151, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163751

RESUMO

Both glycans (O-glycosides) and nucleosides (N-glycosides) play important roles in numerous biological processes. Chemical synthesis is a reliable and effective means to solve the attainability issues of these essential biomolecules. However, due to the stereo- and regiochemical issues during glycan assembly, together with problems including the poor solubility and nucleophilicity of nucleobases in nucleoside synthesis, the development of one-pot glycosylation strategies toward efficient synthesis of both glycans and nucleosides remains poor and challenging. Here, we report the first orthogonal and reactivity-based one-pot glycosylation strategy suitable for both glycan and nucleoside synthesis on the basis of glycosyl ortho-(1-phenylvinyl)benzoates. This one-pot glycosylation strategy not only inherits the advantages including no aglycon transfers, no undesired interference of departing species, and no unpleasant odors associated with the previously developed orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates, but also highly expands the scope (glycans and nucleosides) and increases the number of leaving groups that could be employed for the multistep one-pot synthesis (up to the formation of four different glycosidic bonds). In particular, the current one-pot glycosylation strategy is successfully applied to the total synthesis of a promising tuberculosis drug lead capuramycin and the divergent and formal synthesis of TMG-chitotriomycin with potent and specific inhibition activities toward ß-N-acetylglucosaminidases and important endosymbiotic lipochitooligosaccharides including the Nod factor and the Myc factor, which represents one of the most efficient and straightforward synthetic routes toward these biologically salient molecules.

20.
Nat Commun ; 11(1): 405, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964883

RESUMO

Both of O-glycosides and nucleosides are important biomolecules with crucial rules in numerous biological processes. Chemical synthesis is an efficient and scalable method to produce well-defined and pure carbohydrate-containing molecules for deciphering their functions and developing therapeutic agents. However, the development of glycosylation methods for efficient synthesis of both O-glycosides and nucleosides is one of the long-standing challenges in chemistry. Here, we report a highly efficient and versatile glycosylation method for efficient synthesis of both O-glycosides and nucleosides, which uses glycosyl ortho-(1-phenylvinyl)benzoates as donors. This glycosylation protocol enjoys the various features, including readily prepared and stable donors, cheap and readily available promoters, mild reaction conditions, good to excellent yields, and broad substrate scopes. In particular, the applications of the current glycosylation protocol are demonstrated by one-pot synthesis of several bioactive oligosaccharides and highly efficient synthesis of nucleosides drugs capecitabine, galocitabine and doxifluridine.


Assuntos
Benzoatos/química , Técnicas de Química Sintética/métodos , Química Farmacêutica/métodos , Glicosídeos/síntese química , Nucleosídeos/síntese química , Produtos Biológicos/síntese química , Capecitabina/síntese química , Floxuridina/síntese química , Glicosilação , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA