Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 60, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326861

RESUMO

BACKGROUND: Glioblastoma (GBM) characterized by immune escape is the most malignant primary brain tumors, which has strong immunosuppressive effect. Programmed death ligand-1 (PD-L1) is a recognized immunosuppressive member on the surface of tumor cells, and plays a crucial role in immune evasion of tumors. Actually, little is known about the regulation of PD-L1 expression in GBM. Insulin-like growth factor binding protein 3 (IGFBP3) is upregulated in GBM and is related to poor patient prognosis. However, it remains unclear whether IGFBP3 plays a role in the regulation of PD-L1 expression in GBM. METHODS: The role of IGFBP3 in the glioma immune microenvironment was investigated using the CIBERSORT algorithm. The correlation between IGFBP3 and PD-L1 expression was analyzed using TCGA and CGGA databases. QRT-PCR, immunoblotting and RNA-seq were used to examine the regulatory effect of IGFBP3 on PD-L1 expression. Co-culture assay, cell counting kit (CCK-8), qRT-PCR, ELISA and flow cytometry were performed to explore the function of IGFBP3 in inducing immunosuppression. The biological role of IGFBP3 was verified using immunohistochemical, immunofluorescence and mice orthotopic tumor model. RESULTS: In this study, we analyzed immune cells infiltration in gliomas and found that IGFBP3 may be associated with an immunosuppressive microenvironment. Then, by analyzing TCGA and CGGA databases, our results showed that IGFBP3 and PD-L1 expression were positively correlated in GBM patients, but not in LGG patients. In vitro experiments conducted on different GBM cell lines revealed that the overexpression of IGFBP3 led to an increase in PD-L1 expression, which was reversible upon knockdown IGFBP3. Mechanistically, IGFBP3 activated the JAK2/STAT3 signaling pathway, leading to an increase in PD-L1 expression. Additionally, co-culture experiments results showed IGFBP3 overexpression induced upregulation of PD-L1 expression promoted apoptosis in Jurkat cells, and this effect was blocked by IGFBP3 antibody and PDL-1 inhibitors. Importantly, in vivo experiments targeting IGFBP3 suppressed tumor growth and significantly prolonged the survival of mice. CONCLUSIONS: This research demonstrated IGFBP3 is a novel regulator for PD-L1 expression in GBM, and identified a new mechanism by which IGFBP3 regulates immune evasion through PD-L1, suggesting that IGFBP3 may be a potential novel target for GBM therapy.

2.
Cell Commun Signal ; 21(1): 273, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798789

RESUMO

BACKGROUND: Diabetes can lead to extensive damage to the enteric nervous system (ENS), causing gastrointestinal motility disorders. However, there is currently a lack of effective treatments for diabetes-induced ENS damage. Enteric neural precursor cells (ENPCs) closely regulate the structural and functional integrity of the ENS. L-Fucose, is a dietary sugar that has been showed to effectively ameliorate central nervous system injuries, but its potential for ameliorating ENS damage and the involvement of ENPCs in this process remains uncertain. METHODS: Genetically engineered mice were generated for lineage tracing of ENPCs in vivo. Using diabetic mice in vivo and high glucose-treated primary ENPCs in vitro, the effects of L-Fucose on the injured ENS and ENPCs was evaluated by assessing gastrointestinal motility, ENS structure, and the differentiation of ENPCs. The key signaling pathways in regulating neurogenesis and neural precursor cells properties, transforming growth factor-ß (TGF-ß) and its downstream signaling pathways were further examined to clarify the potential mechanism of L-Fucose on the injured ENS and ENPCs. RESULTS: L-Fucose improved gastrointestinal motility in diabetic mice, including increased defecation frequency (p < 0.05), reduced total gastrointestinal transmission time (p < 0.001) and bead expulsion time (p < 0.05), as well as enhanced spontaneous contractility and electric field stimulation-induced contraction response in isolated colonic muscle strips (p < 0.001). The decrease in the number of neurons and glial cells in the ENS of diabetic mice were reversed by L-Fucose treatment. More importantly, L-Fucose treatment significantly promoted the proportion of ENPCs differentiated into neurons and glial cells both in vitro and in vivo, accompanied by inhibiting SMAD2 phosphorylation. CONCLUSIONS: L-Fucose could promote neurogenesis and gliogenesis derived from ENPCs by inhibiting the SMAD2 signaling, thus facilitating ENS regeneration and gastrointestinal motility recovery in type 1 diabetic mice. Video Abstract.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Sistema Nervoso Entérico , Células-Tronco Neurais , Camundongos , Animais , Fucose/farmacologia , Fucose/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Neurônios/metabolismo , Sistema Nervoso Entérico/metabolismo , Transdução de Sinais
3.
Nano Lett ; 22(13): 5357-5364, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35766994

RESUMO

Although nanopores can be used for single-molecule sequencing of nucleic acids using low-cost portable devices, the characterization of proteins and their modifications has yet to be established. Here, we show that hydrophilic or glycosylated peptides translocate too quickly across FraC nanopores to be recognized. However, high ionic strengths (i.e., 3 M LiCl) and low pH (i.e., pH 3) together with using a nanopore with a phenylalanine at its constriction allows the recognition of hydrophilic peptides, and to distinguish between mono- and diglycosylated peptides. Using these conditions, we devise a nanopore method to detect, characterize, and quantify post-translational modifications in generic proteins, which is one of the pressing challenges in proteomic analysis.


Assuntos
Nanoporos , Glicosilação , Nanotecnologia , Peptídeos/química , Proteínas , Proteômica
4.
Biochemistry ; 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35579944

RESUMO

Coactivator-associated arginine methyltransferase 1 (CARM1) is a member of the family of protein arginine methyltransferases. CARM1 catalyzes methyl group transfer from the cofactor S-adenosyl-l-methionine (AdoMet) to both histone and nonhistone protein substrates. CARM1 is involved in a range of cellular processes, mainly involving RNA transcription and gene regulation. As the aberrant expression of CARM1 has been linked to tumorigenesis, the enzyme is a potential therapeutic target, leading to the development of inhibitors and tool compounds engaging with CARM1. To evaluate the effects of these compounds on the activity of CARM1, sensitive and specific analytical methods are needed. While different methods are currently available to assess the activity of methyltransferases, these assays mainly focus on either the measurement of the cofactor product S-adenosyl-l-homocysteine (AdoHcy) or employ radioactive or expensive reagents, each with their own advantages and limitations. To complement the tools currently available for the analysis of CARM1 activity, we here describe the development of a convenient assay employing peptide substrates derived from poly(A)-binding protein 1 (PABP1). This operationally straightforward liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach allows for the direct detection of substrate methylation with minimal workup. The method was validated, and its value in characterizing CARM1 activity and inhibition was demonstrated through a comparative analysis involving a set of established small molecules and peptide-based CARM1 inhibitors.

5.
Neurobiol Dis ; 175: 105914, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332813

RESUMO

Reactive astrocytes play a complex role in multiple sclerosis, and the astrocytes reactivity is an important factor in the pathogenesis of pain. It is of great significance to explore the genesis and development mechanism of pain in the early stage of multiple sclerosis (MS) for early intervention of the disease. This study aims to explore astrocyte reactivity at different stages of the experimental autoimmune encephalomyelitis (EAE) model, a mouse model of MS, and the role of astrocytes in the pain in the early stage of the EAE. In this study, we demonstrated that spinal dorsal horn astrocytes were activated in the pre-clinical stage of EAE mice, and the inhibition of spinal cord astrocyte reactivity effectively alleviates pain symptoms in EAE mice. On the other hand, spinal cord microglia were not directly participated in the early EAE pain. Moreover, the ion channel LRRC8A mediated the reactivity of spinal dorsal horn astrocytes by regulating the STAT3 pathway, therefore playing a role in the early pain of EAE.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Neuralgia , Camundongos , Animais , Encefalomielite Autoimune Experimental/patologia , Astrócitos/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/patologia , Neuralgia/metabolismo , Medula Espinal/patologia , Esclerose Múltipla/patologia , Camundongos Endogâmicos C57BL , Proteínas de Membrana/metabolismo
6.
J Neuroinflammation ; 19(1): 302, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527131

RESUMO

BACKGROUND: The nucleotide oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) in dorsal root ganglion (DRG) contributes to pain hypersensitivity in multiple neuropathic pain models, but the function of the NLRP3 in diabetic neuropathic pain (DNP) and the regulation mechanism are still largely unknown. Epigenetic regulation plays a vital role in the controlling of gene expression. Ten-eleven translocation methylcytosine dioxygenase 2 (TET2) is a DNA demethylase that contributes to transcriptional activation. TET2 is also involved in high glucose (HG)-induced pathology. METHODS: DNP was induced in mice via the intraperitoneal injection of streptozotocin (STZ) for five consecutive days and the mechanical threshold was evaluated in STZ-diabetic mice by using von Frey hairs. The expression level of the NLRP3 pathway and TET2 in DRG were determined through molecular biology experiments. The regulation of the NLRP3 pathway by TET2 was examined in in vitro and in vivo conditions. RESULTS: In the present research, we first established the DNP model and found that NLRP3 pathway was activated in DRG. The treatment of NLRP3 inhibitor MCC950 alleviated the mechanical allodynia of DNP mice. Then we revealed that in STZ-diabetic mice DRG, the genomic DNA was demethylated, and the expression of DNA demethylase TET2 was increased evidently. Using RNA-sequencing analysis, we found that the expression of Txnip, a gene that encodes a thioredoxin-interacting protein (TXNIP) which mediates NLRP3 activation, was elevated in the DRG after STZ treatment. In addition, knocking down of TET2 expression in DRG using TET2-siRNA suppressed the mRNA expression of Txnip and subsequently inhibited the expression/activation of NLRP3 inflammasome in vitro and in vivo as well as relieved the pain sensitivity of DNP animals. CONCLUSION: The results suggested that the upregulation of the TXNIP/NLRP3 pathway by TET2 in DRG was involved in the pain hypersensitivity of the DNP model.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Dioxigenases , Neuralgia , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Gânglios Espinais/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Regulação para Cima , Ativação Transcricional , Dioxigenases/genética , Dioxigenases/metabolismo , Epigênese Genética , Estreptozocina , Neuralgia/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
7.
Neurochem Res ; 47(2): 493-502, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34626306

RESUMO

Neuropathic pain is one of the most common conditions requiring treatment worldwide. Salidroside (SAL), a phenylpropanoid glucoside extracted from Rhodiola, has been suggested to produce an analgesic effect in chronic pain. However, whether SAL could alleviate pain hypersensitivity after peripheral nerve injury and its mode of action remains unclear. Several studies suggest that activation of the spinal NOD-like receptor protein 3 (NLRP3) inflammasome and its related proteins contribute to neuropathic pain's pathogenesis. This study investigates the time course of activation of spinal NLRP3 inflammasome axis in the development of neuropathic pain and also whether SAL could be an effective treatment for this type of pain by modulating NLRP3 inflammasome. In the chronic constriction injury (CCI) mice model, spinal NLRP3 inflammasome-related proteins and TXNIP, the mediator of NLRP3, were upregulated from the 14th to the 28th day after injury. The TXNIP and NLRP3 inflammasome-related proteins were mainly present in neurons and microglial cells in the spinal dorsal horn after CCI. Intraperitoneal injection of SAL at 200 mg/kg for 14 consecutive days starting from the 7th day of CCI injury could ameliorate mechanical and thermal hypersensitivity in the CCI model. Moreover, SAL inhibited the activation of the TXNIP/NLRP3 inflammasome axis and mitigated the neuronal loss of spinal dorsal horn induced by nerve injury. These results indicate that SAL could produce analgesic and neuroprotective effects in the CCI model of neuropathic pain.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Neuralgia , Animais , Proteínas de Transporte , Proteínas de Ciclo Celular/metabolismo , Constrição , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/metabolismo , Fenóis , Ratos , Ratos Sprague-Dawley , Tiorredoxinas/metabolismo
8.
BMC Gastroenterol ; 22(1): 81, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35209867

RESUMO

BACKGROUND: The role of Helicobacter pylori (H. pylori) infection in the development of non-alcoholic fatty liver disease (NAFLD) remains controversial. The exact relationship requires further investigation. This study aimed to determine the association between them in China. METHODS: A retrospective study was conducted on 71,633 participants who underwent physical examinations. 13C urea breath test (13C-UBT) was conducted to detect H. pylori infection, and ultrasonography was used to detect NAFLD. RESULTS: Body mass index (BMI), blood pressure (BP), and triglyceride (TG) levels were higher in participants with H. pylori infection than in those without H. pylori infection. While the levels of high-density lipoprotein cholesterol (HDL-C) for participants with H. pylori infection was lower than without H. pylori infection (P < 0.001). After adjusting for confounding factors (age, sex, BMI, BP, Scr, BUN, LDL-C, HDL-C, triglycerides, FBG and HbA1c), multivariate logistic regression analysis indicated that there was no independent relationship between them (P = 0.574). Subgroup analysis (stratified by sex, age, BMI, hypertension, diabetes and dyslipidemia) showed that H. pylori infection was not included as an independent risk factor for NAFLD. Moreover, the different grades of NAFLD were not related to H. pylori infection. CONCLUSIONS: These results indicate that H. pylori infection is not an independent risk factor for NAFLD in China.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Hepatopatia Gordurosa não Alcoólica , China/epidemiologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/epidemiologia , Humanos , Estudos Retrospectivos , Fatores de Risco
9.
Bioprocess Biosyst Eng ; 45(3): 515-525, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35059820

RESUMO

The phenomenon that the anaerobic system is inhibited by acid has always been a bottleneck hindering the application of anaerobic digestion (AD) technology. We tried to introduce electrolysis into AD to improve the acidification resistance, and eventually the productivity of the energy. In a batch fermentation device, the ability of electrochemical anaerobic digestion (EAD) to resist acidification was evaluated in current intensity, electrode potential, AC impedance, microbial community, pH value, and volatile fatty acids (VFAs). The results showed that the average concentration of VFAs in EAD was 32.9% lower than that in AD, the energy efficiency of EAD is 53.25% higher than AD, indicating that EAD has stronger anti-acidification ability and energy conversion efficiency than AD. When the EAD reaches a steady state, the current intensity fluctuates in the range of 7-12 mA, the electrode potential difference is maintained at 600 ± 5 mV, and the internal resistance decreases from 3333.3 ± 16Ω at startup to 68.9 ± 1.4Ω at the steady state, indicating that the EAD has stronger resistance to acidification may be due to the degradation of some VFAs on the electrode surface. Furthermore, the 16S rRNA sequencing analysis showed that the dominant electricity-producing bacteria on EAD anode surface were Clostridium, Hydrogenophaga and Trichloromonas, with a relative abundance of 40.32%, while the relative abundance of electrogenic bacteria in AD bulk solution and EAD bulk solution were about 1/2 and 1/4 that of EAD anode film, suggesting that the electricity-producing bacteria on the electrode surface play an important role in the degradation of VFAs.


Assuntos
Reatores Biológicos , Ácidos Graxos Voláteis , Anaerobiose , Reatores Biológicos/microbiologia , Eletrólise , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Esgotos
10.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408944

RESUMO

17α-ethinylestradiol (17α-EE2) is frequently detected in water bodies due to its use being widespread in the treatment of prostate and breast cancer and in the control of alopecia, posing a threat to humans and aquatic organisms. However, studies on its toxicity to Chlorella pyrenoidosa have been limited to date. This study investigated the effects of 17α-EE2 on the growth, photosynthetic activity, and antioxidant system of C. pyrenoidosa and revealed related molecular changes using transcriptomic analysis. The cell density of algae was inhibited in the presence of 17α-EE2, and cell morphology was also altered. Photosynthetics were damaged, while reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) content increased. Further transcriptomic analysis revealed that the pathways of photosynthesis and DNA replication were affected at three concentrations of 17α-EE2, but several specific pathways exhibited various behaviors at different concentrations. Significant changes in differentially expressed genes and their enrichment pathways showed that the low-concentration group was predominantly impaired in photosynthesis, while the higher-concentration groups were biased towards oxidative and DNA damage. This study provides a better understanding of the cellular and molecular variations of microalgae under 17α-EE2 exposure, contributing to the environmental risk assessment of such hazardous pollutants on aquatic organisms.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Chlorella/genética , Chlorella/metabolismo , Etinilestradiol/toxicidade , Humanos , Masculino , Microalgas/metabolismo , Transcriptoma , Poluentes Químicos da Água/análise
11.
Chembiochem ; 22(24): 3469-3476, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569136

RESUMO

The dynamic interplay of post-translational modifications (PTMs) in chromatin provides a communication system for the regulation of gene expression. An increasing number of studies have highlighted the role that such crosstalk between PTMs plays in chromatin recognition. In this study, (bio)chemical and structural approaches were applied to specifically probe the impact of acetylation of Lys18 in the histone H3 tail peptide on peptide recognition by the protein methyltransferase coactivator-associated arginine methyltransferase 1 (CARM1). Peptidomimetics that recapitulate the transition state of protein arginine N-methyltransferases, were designed based on the H3 peptide wherein the target Arg17 was flanked by either a free or an acetylated lysine. Structural studies with these peptidomimetics and the catalytic domain of CARM1 provide new insights into the binding of the H3 peptide within the enzyme active site. While the co-crystal structures reveal that lysine acetylation results in minor conformational differences for both CARM1 and the H3 peptide, acetylation of Lys18 does lead to additional interactions (Van der Waals and hydrogen bonding) and likely reduces the cost of desolvation upon binding, resulting in increased affinity. Informed by these findings a series of smaller peptidomimetics were also prepared and found to maintain potent and selective CARM1 inhibition. These findings provide new insights both into the mechanism of crosstalk between arginine methylation and lysine acetylation as well as towards the development of peptidomimetic CARM1 inhibitors.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Lisina/antagonistas & inibidores , Peptidomiméticos/farmacologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Acetilação , Animais , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Lisina/metabolismo , Camundongos , Modelos Moleculares , Peptidomiméticos/síntese química , Peptidomiméticos/química , Conformação Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Especificidade por Substrato
12.
Methods ; 175: 24-29, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31421210

RESUMO

Protein arginine N-methyltransferases (PRMTs) methylate arginine residues in target proteins using the ubiquitous methyl donor S-adenosyl-l-methionine (AdoMet) as a cofactor. PRMTs play important roles in both healthy and disease states and as such inhibition of PRMTs has gained increasing interest. A primary challenge in the development of PRMT inhibitors is achieving specificity for the PRMT of interest as the active sites are highly conserved for all nine members of the PRMT family. Notably, PRMTs show very little redundancy in vivo due to their specific sets of protein substrates. However, relatively little is known about the interactions of PRMTs with their protein substrates that drive this substrate specificity. We here describe the extended application of a methodology recently developed in our group for the production of peptide-based transition state mimicking PRMT inhibitors. Using this approach, an adenosine moiety, mimicking that of the AdoMet cofactor, is covalently linked to the guanidine side chain of a target arginine residue contained in a peptidic fragment derived from a PRMT substrate protein. Using this approach, histone H4 tail peptide-based transition state mimics were synthesized wherein the adenosine group was linked to the Arg3 residue. H4R3 is a substrate for multiple PRMTs, including PRMT1 and PRMT6. The inhibition results obtained with these new H4-based transition state mimics show low micromolar IC50 values against PRMT1 and PRMT6, indicating that the methodology is applicable to the broader family of PRMTs.


Assuntos
Arginina/química , Inibidores Enzimáticos/química , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , S-Adenosilmetionina/química , Domínio Catalítico , Histonas/química , Concentração Inibidora 50 , Metilação , Peptídeos/síntese química , Peptídeos/química , Proteína-Arginina N-Metiltransferases/química , Especificidade por Substrato
13.
Ecotoxicol Environ Saf ; 198: 110648, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32388188

RESUMO

Microalgae have been used for the removal of heavy metals or synthetic organics; however, the simultaneous removal of both types of compounds is always technically difficult. In this study, a green algae, Chlamydomonas reinhardtii, was first used to simultaneously remove hexavalent chromium [Cr(VI)] and o-nitrophenol (ONP), and the balance among biomass, oxidative damage and removal rate was also investigated. The results showed that treatment with Cr(VI) or ONP decreased the photosynthetic and superoxide dismutase activities and increased the production of reactive oxygen species (ROS) and malondialdehyde content. However, combined treatment with Cr(VI) (≤4 mg/L) and ONP (≤15 mg/L) significantly decreased ROS generation and alleviated cell damage in C. reinhardtii. In addition, the removal rates of Cr(VI) and ONP by C. reinhardtii cells significantly increased from 37.4% to 54.9% and from 35.8% to 45.9%, respectively, and the cells could be reused at least four times. Moreover, the increased acidity in the medium and Cr(VI) reductase content in C. reinhardtii caused Cr(VI) to be reduced to Cr(III). The addition of an exogenous antioxidant decreased the removal rates of Cr(VI) and ONP. These results indicated that the presence of Cr(VI) could induce ROS generation in C. reinhardtii and enhance ONP degradation, which consumed ROS, alleviated cell damage, and thus benefited Cr(VI) reduction. As a result, C. reinhardtii could be used as a theoretical candidate for the simultaneous removal of combined Cr(VI) and ONP contamination.


Assuntos
Biodegradação Ambiental , Chlamydomonas reinhardtii/metabolismo , Cromo/metabolismo , Poluentes Ambientais/metabolismo , Nitrofenóis/metabolismo , Biomassa , Metais Pesados/metabolismo
14.
Ecotoxicol Environ Saf ; 178: 195-201, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31009925

RESUMO

The increased anthropogenic activities in the Tibetan Plateau may threaten the river environmental safety. However, limited information is available on the Lhasa River in the Tibetan Plateau, which is known as the remaining pure land on Earth. Here, we firstly investigated the distribution patterns of bacterial and archaeal communities in sediments in response to dam construction and sewage discharge along the reaches of the Lhasa River. The total organic carbon, total Nitrogen (N), nitrate and ammonium contents and the relative abundance of bacteria and archaea significantly increased in reservoir sites in comparison with sites below dam, and they also gradually increased from upstream to downstream in sewage discharge sites. By contrast, the diversity of sediment bacteria and archaea in reservoir sites were significantly less than that in sites below dam and sewage discharge sites at Operational Taxonomic Units (OTUs) level. The dominant species were water-bloom cyanobacteria in the reservoir area of Zhikong Dam and Proteobacteria in the sewage discharge sites, which were significantly correlated with the nutrient concentration. The abundance of nitrogen functional genes significantly also increased in reservoir sites and the downstream of sewage discharge areas. These results suggested that dam construction and sewage discharge caused the increase of sediment bacterial communities and nutrient levels and potentially induced eutrophication in the Lhasa River.


Assuntos
Archaea/isolamento & purificação , Sedimentos Geológicos/microbiologia , Proteobactérias/isolamento & purificação , Rios/química , Rios/microbiologia , Esgotos/microbiologia , Compostos de Amônio/análise , Archaea/genética , Eutrofização , Nitrogênio/análise , Proteobactérias/genética , RNA Ribossômico 16S/genética , Tibet , Poluentes Químicos da Água/análise
15.
Int J Mol Sci ; 18(11)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29068391

RESUMO

The radiation-induced damage to mitochondrial oxidative respiratory chain could lead to generating of superoxide anions (O2-) and secondary reactive oxygen species (ROS), which are the major resources of continuous ROS production after radiation. Scavenging radiation-induced ROS effectively can help mitochondria to maintain their physiological function and relief cells from oxidative stress. Dihydropyridines (DHPs) are biomimetic hydrogen sources that could protect cells against radiation damage. In this study, we designed and synthetized three novel mitochondrial-targeted dihydropyridines (Mito-DHPs) that utilize the mitochondrial membrane potential to enter the organelle and scavenge ROS. MitoTracker confirmed Mito-DHPs accumulation in mitochondria, and the DCFH-DA assay demonstrated effective ROS scavenging activity. In addition, the γ-H2AX and comet assay demonstrated the ability of Mito-DHPs to protect against both radiation and ROS-induced DNA strand breaks. Furthermore, Mito-DHP1 proved to be non-toxic and displayed significant radioprotection activity (p < 0.05) in vitro. Mito-DHPs are therefore promising antioxidants that could penetrate the membrane of mitochondria, scavenge excessive ROS, and protect cells against radiation-induced oxidative damage.


Assuntos
Di-Hidropiridinas/farmacologia , Sequestradores de Radicais Livres/farmacologia , Mitocôndrias/metabolismo , Protetores contra Radiação/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Células CHO , Cricetulus/metabolismo , Di-Hidropiridinas/química , Feminino , Sequestradores de Radicais Livres/química , Células HeLa , Humanos , Espécies Reativas de Oxigênio/química
16.
Amino Acids ; 46(9): 2177-88, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24893662

RESUMO

Threonine is a nutritionally essential amino acid (EAA) for the growth and development of humans and other nonruminant animals and must be provided in diets to sustain life. The aim of this study was to synthesize threonine in mammalian cells through transgenic techniques. To achieve this goal, we combined the genes involved in bacterial threonine biosynthesis pathways into a single open reading frame separated by self-cleaving peptides (2A) and then linked it into a transposon system (piggyBac). The plasmids pEF1a-IRES-GFP-E2F-his and pEF1a-IRES-GFP-M2F-his expressed Escherichia coli homoserine kinase and threonine synthase efficiently in mouse cells and enabled cells to synthesize threonine from homoserine. This biosynthetic pathway occurred with a low level of efficiency in transgenic mice. Three transgenic mice were identified by Southern blot from 72 newborn mice, raising the possibility that a high level of expression of these genes in mouse embryos might be lethal. The results indicated that it is feasible to synthesize threonine in animal cells using genetic engineering technology. Further work is required to improve the efficiency of this method for introducing genes into mammals. We propose that the transgenic technology provides a promising means to enhance the synthesis of nutritionally EAAs in farm animals and to eliminate or reduce supplementation of these nutrients in diets for livestock, poultry and fish.


Assuntos
Aminoácidos Essenciais , Regulação Enzimológica da Expressão Gênica , Aminoácidos Essenciais/biossíntese , Aminoácidos Essenciais/genética , Animais , Escherichia coli/enzimologia , Escherichia coli/genética , Camundongos , Camundongos Transgênicos , Células NIH 3T3
17.
Med Oncol ; 41(6): 141, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714554

RESUMO

IGFBP-3 is aberrantly expressed in many tumor types, and its serum and tumor tissue levels provide auxiliary information for assessing the degree of tumor malignancy and patient prognosis, making it a potential therapeutic target for human malignancies and conferring it remarkable clinical value for determining patient prognosis. In this review, we provide a comprehensive overview of the aberrant expression, diverse biological effects, and clinical implications of IGFBP-3 in tumors and its role as a potential prognostic marker and therapeutic target for tumors. In addition, we summarize the signaling pathways through which IGFBP-3 exerts its effects. IGFBP-3 comprises an N-terminal, an intermediate region, and a C-terminal structural domain, each exerting different biological effects in several tumor cell types in an IGF-dependent/non-independent manner. IGFBP-3 shares an intricate relationship with the tumor microenvironment, thereby affecting tumor growth. Overall, IGFBP-3 is an essential regulatory factor that mediates tumor occurrence and progression. Gaining deeper insights into the fundamental characteristics of IGFBP-3 and its role in various tumor types will provide new perspectives and allow for the development of novel strategies for cancer diagnosis, treatment, and prognostic evaluation.


Assuntos
Biomarcadores Tumorais , Progressão da Doença , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Neoplasias , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neoplasias/metabolismo , Neoplasias/diagnóstico , Neoplasias/patologia , Neoplasias/terapia , Biomarcadores Tumorais/metabolismo , Prognóstico , Transdução de Sinais , Microambiente Tumoral , Animais
18.
Int J Surg ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847785

RESUMO

BACKGROUND: The study of changes in the microbiome in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC) holds significant potential for developing noninvasive diagnostic tools as well as innovative interventions to alter the progression of diseases. This systematic review and meta-analysis aimed to analyze in detail the taxonomic and functional characteristics of the gut microbiome in patients with CP and PDAC. METHODS: Two researchers conducted a systematic search across public databases to gather all published research up to June 2023. Diversity and gut microbiota composition are the main outcomes we focus on. RESULTS: This meta-analysis included 14 studies, involving a total of 1511 individuals in the PDAC (n=285), CP (n=342), and control (n=649) groups. Our results show a significant difference in the composition of gut microbiota between PDAC/CP patients compared to healthy controls (HC), as evidenced by a slight decrease in α-diversity, including Shannon (SMD=-0.33; P=0.002 and SMD=-0.59; P<0.001, respectively) and a statistically significant ß-diversity (P<0.05). The pooled results showed that at the phylum level, the proportion of Firmicutes was lower in PDAC and CP patients than in HC patients. At the genus level, more than two studies demonstrated that 4 genera were significantly increased in PDAC patients compared to HC (e.g., Escherichia-Shigella and Veillonella). CP patients had an increase in 4 genera (e.g., Escherichia-Shigella and Klebsiella) and a decrease in 8 genera (e.g., Coprococcus and Bifidobacterium) compared to HC. Functional/metabolomics results from various studies also showed differences between PDAC/CP patients and HC. In addition, this study found no significant differences in gut microbiota between PDAC and CP patients. CONCLUSIONS: Current evidence suggests changes in gut microbiota is associated with PDAC/CP, commonly reflected by a reduction in beneficial species and an increase in the pathogenic species. Further studies are needed to confirm these findings and explore therapeutic possibilities.

19.
Sci Signal ; 17(818): eadf8016, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194477

RESUMO

Type I interferons (IFNs) are produced by almost all cell types and play a vital role in host defense against viral infection. Infection with an RNA virus activates receptors such as RIG-I, resulting in the recruitment of the adaptor protein MAVS to the RIG-I-like receptor (RLR) signalosome and the formation of prion-like functional aggregates of MAVS, which leads to IFN-ß production. Here, we identified the aldehyde dehydrogenase 1B1 (ALDH1B1) as a previously uncharacterized IFN-stimulated gene (ISG) product with critical roles in the antiviral response. Knockout of ALDH1B1 increased, whereas overexpression of ALDH1B1 restricted, the replication of RNA viruses, such as vesicular stomatitis virus (VSV), Zika virus (ZIKV), dengue virus (DENV), and influenza A virus (IAV). We found that ALDH1B1 localized to mitochondria, where it interacted with the transmembrane domain of MAVS to promote MAVS aggregation. ALDH1B1 was recruited to MAVS aggregates. In addition, ALDH1B1 also enhanced the interaction between activated RIG-I and MAVS, thus increasing IFN-ß production and the antiviral response. Furthermore, Aldh1b1-/- mice developed more severe symptoms than did wild-type mice upon IAV infection. Together, these data identify an aldehyde dehydrogenase in mitochondria that functionally regulates MAVS-mediated signaling and the antiviral response.


Assuntos
Vírus da Influenza A , Infecção por Zika virus , Zika virus , Animais , Camundongos , Aldeído Desidrogenase , Antivirais , Proteína DEAD-box 58 , Camundongos Knockout
20.
Cell Death Dis ; 15(1): 74, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242874

RESUMO

Copy number variations (CNVs) play a vital role in regulating genes expression and tumorigenesis. We explored the copy number alterations in early-stage lung adenocarcinoma using high-throughput sequencing and nucleic acid flight mass spectrometry technology, and found that 8q22.1-22.2 is frequently amplified in lung adenocarcinoma tissues. COX6C localizes on the region and its expression is notably enhanced that driven by amplification in lung adenocarcinoma. Knockdown of COX6C significantly inhibits the cell proliferation, and induces S-G2/M cell cycle arrest, mitosis deficiency and apoptosis. Moreover, COX6C depletion causes a deficiency in mitochondrial fusion, and impairment of oxidative phosphorylation. Mechanistically, COX6C-induced mitochondrial deficiency stimulates ROS accumulation and activates AMPK pathway, then leading to abnormality in spindle formation and chromosome segregation, activating spindle assemble checkpoint, causing mitotic arrest, and ultimately inducing cell apoptosis. Collectively, we suggested that copy amplification-mediated COX6C upregulation might serves as a prospective biomarker for prognosis and targeting therapy in patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Complexo IV da Cadeia de Transporte de Elétrons , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Variações do Número de Cópias de DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias Pulmonares/patologia , Mitose/genética , Espécies Reativas de Oxigênio/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA