Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
FASEB J ; 38(2): e23440, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252072

RESUMO

CD155, a member of the immunoglobulin superfamily, is closely related to cell proliferation, adhesion, and migration. CD155 is overexpressed on the surface of cancer cells to promote cell proliferation and is upregulated in damaged tissues as a stress-induced molecule. The process of skeletal muscle regeneration after injury is complex and involves injurious stimulation and subsequent satellite cell proliferation. However, the role of CD155 in this process remains unelucidated. This study aimed to explore the role of CD155 in injured skeletal muscle regeneration and to clarify its effect on satellite cell proliferation and differentiation. Here, quantitative real-time polymerase chain reaction (RT-qPCR) and immunofluorescence results indicated that CD155 expression in satellite cells increased after skeletal muscle injury. CD155 knockout in mice impaired the regeneration of skeletal muscle. A bone marrow transplantation mouse model was constructed and revealed that CD155 on skeletal muscle tissues, not immune cells, affected muscle regeneration. In vitro, CD155 knockdown in myoblasts inhibited their proliferation and differentiation. The transcriptomic analysis also indicated that CD155 absence can impair the biological proliferation and differentiation process of myoblasts. Our research demonstrates that CD155 directly promotes injured muscle regeneration by regulating satellite cell proliferation and differentiation, which may be a potential therapeutic molecule for skeletal muscle injury.


Assuntos
Músculo Esquelético , Receptores Virais , Células Satélites de Músculo Esquelético , Animais , Camundongos , Transplante de Medula Óssea , Diferenciação Celular , Proliferação de Células , Receptores Virais/genética
2.
New Phytol ; 242(6): 2872-2887, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581199

RESUMO

In the Vetrix clade of Salix, a genus of woody flowering plants, sex determination involves chromosome 15, but an XY system has changed to a ZW system. We studied the detailed genetic changes involved. We used genome sequencing, with chromosome conformation capture (Hi-C) and PacBio HiFi reads to assemble chromosome level gap-free X and Y of Salix arbutifolia, and distinguished the haplotypes in the 15X- and 15Y-linked regions, to study the evolutionary history of the sex-linked regions (SLRs). Our sequencing revealed heteromorphism of the X and Y haplotypes of the SLR, with the X-linked region being considerably larger than the corresponding Y region, mainly due to accumulated repetitive sequences and gene duplications. The phylogenies of single-copy orthogroups within the SLRs indicate that S. arbutifolia and Salix purpurea share an ancestral SLR within a repeat-rich region near the chromosome 15 centromere. During the change in heterogamety, the X-linked region changed to a W-linked one, while the Z was derived from the Y.


Assuntos
Cromossomos de Plantas , Filogenia , Salix , Cromossomos de Plantas/genética , Salix/genética , Haplótipos/genética , Evolução Biológica , Evolução Molecular , Loci Gênicos , Processos de Determinação Sexual/genética
3.
Chemphyschem ; 25(9): e202400014, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38388960

RESUMO

In this paper, we report the first example of impact sensitivity prediction based on the genetic function approximation (GFA) as a regression method. The prediction is applicable for a wide variety of chemical families, which include nitro compounds, peroxides, nitrogen-rich salts, heterocycles, etc. Within this work, we have obtained 7 empirical models (with 27-32 basis functions), which all provide 0.80≤R2≤0.83 and 7.2 J≤RMSE≤7.8 J (for 450 training set compounds) and 0.64≤R2≤0.70 and 11.2 J≤RMSE≤12.4 J (for 170 test set compounds). The models were developed using Friedman Lack-of-Fit as a scoring function, which allows avoiding an overfitting. All the models have simple descriptors as basis functions and include linear splines. Furthermore, the applied descriptors do not require expensive calculation procedures, namely, non-empirical quantum-chemical calculations, complex iterative procedures, real space electron density analysis, etc. Most descriptors are based on structural and topological analysis and a part of them require very cheap semi-empirical PM6 calculations. The prediction takes a few minutes as an average, and most of the time is for the structure preparation and manual calculation of the descriptor "Increment", which is based on our recent incremental theory.

4.
Environ Sci Technol ; 58(23): 10015-10027, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38798012

RESUMO

Nanosilvers with multifarious morphologies have been extensively used in many fields, but their morphology-dependent toxicity toward nontarget aquatic organisms remains largely unclear. Herein, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate the toxicological effects of silver nanomaterials with various morphologies on spatially resolved lipid profiles within multiple organs in adult zebrafish, especially for the gill, liver, and intestine. Integrated with histopathology, enzyme activity, accumulated Ag contents and amounts, as well as MSI results, we found that nanosilvers exhibit morphology-dependent nanotoxicity by disrupting lipid levels and producing oxidative stress. Silver nanospheres (AgNSs) had the highest toxicity toward adult zebrafish, whereas silver nanoflakes (AgNFs) exhibited greater toxicity than silver nanowires (AgNWs). Levels of differential phospholipids, such as PC, PE, PI, and PS, were associated with nanosilver morphology. Notably, we found that AgNSs induced greater toxicity in multiple organs, such as the brain, gill, and liver, while AgNWs and AgNFs caused greater toxicity in the intestine than AgNSs. Lipid functional disturbance and oxidative stress further caused inflammation and membrane damage after exposure to nanosilvers, especially with respect to sphere morphology. Taken together, these findings will contribute to clarifying the toxicological effects and mechanisms of different morphologies of nanosilvers in adult zebrafish.


Assuntos
Prata , Peixe-Zebra , Animais , Prata/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Nanopartículas Metálicas/toxicidade , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos
5.
J Fluoresc ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878193

RESUMO

The strategy of parallel factor analysis, combined with the internal standard method, has been increasingly applied to the qualitative and quantitative analysis of three-dimensional fluorescence spectra of unknown mixed fluorophores. Nevertheless, the disparity in the number of fluorophores included in the internal standard sample set and the number included in test samples may impact the qualitative and quantitative outcomes of parallel factor analysis. In this work, we systematically established the framework of the parallel factor analysis with internal standard sample embedding (ISSE-PARAFAC) strategy. We applied this framework to six datasets representing two scenarios and a real dataset and conducted a detailed discussion on the effects of the disparity between the number of fluorophores in the internal standard sample set and the number in the test set on both qualitative and quantitative results. Additionally, we introduced an enhancement to PARAFAC by aggregating fluorophores with similar emission wavelengths, corresponding to the peaks of emission loadings (spectra) obtained from PARAFAC, as a single fluorophore. This aggregation aimed to mitigate the strong correlation between similar fluorophores. The results imply that the presence of irrelevant fluorophores in the internal standard sample set, whether increased or decreased, does not significantly affect the qualitative and quantitative analysis of target fluorophores in the test set. Moreover, we demonstrated that the improved parallel factor analysis with internal standard sample embedding not only fully decomposes the uncorrelated mixed fluorophores for qualitative analysis but also allows the established linear concentration model for fluorescent components to predict the corresponding fluorophore concentration of test samples, enabling quantitative analysis at the ppm level (mg/L).

6.
Oral Dis ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438324

RESUMO

OBJECTIVES: This study aimed to investigate the effect of endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme 1α (IRE1α) on the sonic hedgehog N-terminus (N-Shh)-enhanced-osteogenic differentiation process in mouse embryonic fibroblasts (MEFs). MATERIALS AND METHODS: Osteogenesis of MEFs was observed by alkaline phosphatase (ALP) staining, alizarin red staining, and Von Kossa staining assays. Activation of unfolded protein response and Shh signaling were examined using real-time quantitative PCR and western blot assays. IRE1α-deficient MEFs were used to explore the effect of IRE1α on N-Shh-driven osteogenesis. RESULTS: N-Shh increased ALP activity, matrix mineralization, and the expression of Alp and Col-I in MEFs under osteogenic conditions; notably, this was reversed when combined with the ER stress activator Tm treatment. Interestingly, the administration of N-Shh decreased the expression of IRE1α. Abrogation of IRE1α increased the expression of Shh pathway factors in osteogenesis-induced MEFs, contributing to the osteogenic effect of N-Shh. Moreover, IRE1α-deficient MEFs exhibited elevated levels of osteogenic markers. CONCLUSIONS: Our findings suggest that the IRE1α-mediated unfolded protein response may alleviate the ossification of MEFs by attenuating Shh signaling. Our research has identified a strategy to inhibit excessive ossification, which may have clinical significance in preventing temporomandibular joint bony ankylosis.

7.
Plant Dis ; 108(7): 2181-2189, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38522091

RESUMO

Peach latent mosaic viroid (PLMVd) infects peach trees in China and induces a conspicuous albino phenotype (peach calico, PC) that is closely associated with variants containing a 12-to-14 nucleotide hairpin insertion capped by a U-rich loop. Initially, PC disease distribution was limited to parts of Italy, and it was first detected in the field in China in 2019. To explore the molecular and biological characteristics of PLMVd PC isolates in peach in China, we conducted a comprehensive analysis of disease phenotype development and investigated the data-associated pathogenicity and in vivo dynamics of the Chinese isolate PC-A2 using slash-inoculation into GF-305 peach seedlings. Inoculated seedlings displayed PC symptoms much earlier following topping treatment, and PLMVd infectivity was further assessed using bioassay and semiquantitative RT-PCR experiments. Evolutionary analysis showed that the PC isolate and its progeny variants clustered into a single phylogroup distinct from reference PC-C40 isolates from Italy and PC-K1 and PC-K2 from South Korea. Some PC-A2 progeny variants from green leaves of PC-expressing seedlings showed unbalanced point mutations in hairpin stems compared with the PC-C40 reference sequence and constituted a new stem insertion type. The results reveal associations between the recessive phenotypes of peach albino symptoms and base variation in hairpin stem insertions relative to the PC-C40/chloroplastic heat shock protein 90 reference sequence.


Assuntos
Doenças das Plantas , Prunus persica , Viroides , Doenças das Plantas/virologia , Prunus persica/virologia , China , Viroides/genética , Viroides/fisiologia , Viroides/patogenicidade , Viroides/isolamento & purificação , Filogenia , Mutação , Fenótipo , RNA Viral/genética , Plântula/virologia , Folhas de Planta/virologia
8.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928490

RESUMO

Caragana sensu lato (s.l.) includes approximately 100 species that are mainly distributed in arid and semi-arid regions. Caragana species are ecologically valuable for their roles in windbreaking and sand fixation. However, the taxonomy and phylogenetic relationships of the genus Caragana are still unclear. In this study, we sequenced and assembled the chloroplast genomes of representative species of Caragana and reconstructed robust phylogenetic relationships at the section level. The Caragana chloroplast genome has lost the inverted repeat region and wascategorized in the inverted repeat loss clade (IRLC). The chloroplast genomes of the eight species ranged from 128,458 bp to 135,401 bp and contained 110 unique genes. All the Caragana chloroplast genomes have a highly conserved structure and gene order. The number of long repeats and simple sequence repeats (SSRs) showed significant variation among the eight species, indicating heterogeneous evolution in Caragana. Selective pressure analysis of the genes revealed that most of the protein-coding genes evolved under purifying selection. The phylogenetic analyses indicated that each section forms a clade, except the section Spinosae, which was divided into two clades. This study elucidated the evolution of the chloroplast genome within the widely distributed genus Caragana. The detailed information obtained from this study can serve as a valuable resource for understanding the molecular dynamics and phylogenetic relationships within Caragana.


Assuntos
Caragana , Evolução Molecular , Genoma de Cloroplastos , Filogenia , Caragana/genética , Repetições de Microssatélites/genética
9.
Open Life Sci ; 19(1): 20220919, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071496

RESUMO

The mortality rate of acute-on-chronic liver failure (ACLF) remains significantly elevated; hence, this study aimed to investigate the impact of heat shock protein family B (small) member 1 (HSPB1) on ACLF in vivo and in vitro and the underlying mechanism. This study used the ACLF mouse model, and liver damage extent was studied employing Masson trichrome, hematoxylin and eosin (H&E), Sirius red staining, and serum biochemical indices. Similarly, hepatocyte injury in lipopolysaccharide (LPS)-induced L02 cells was evaluated using cell counting kit-8 assay, enzymatic activity, flow cytometry, and TUNEL assay, while the underlying mechanism was investigated using western blot. Results showed that the morphology of liver tissue in ACLF mice was changed and was characterized by cirrhosis, fibrosis, collagen fiber deposition, inflammatory cell infiltration, and elevated liver injury indices. Moreover, HSPB1 was upregulated in both ACLF patients and mice, where overexpressing HSPB1 was found to inhibit ACLF-induced liver damage. Similarly, the HSPB1 expression in LPS-treated L02 cell lines was also increased, where overexpressing HSPB1 was found to promote cell viability, inhibit liver injury-related enzyme activity, and suppress apoptosis. Mechanistic investigations revealed that HSPB1 was responsible for inhibiting p-P53 and Bax protein levels, where activated P53 counteracted HSPB1's effects on cellular behaviors. In conclusion, HSPB1 attenuated ACLF-induced liver injury in vivo and inhibited LPS-induced hepatocyte damage in vitro, suggesting that HSPB1 may be a novel target for ACLF therapy.

10.
Cancer Biomark ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38427468

RESUMO

BACKGROUND: N6-methyladenosine (m6A) modification has been associated with non-small cell lung cancer (NSCLC) tumorigenesis. OBJECTIVES: This study aimed to determine the functions of Vir-like m6A methyltransferase-associated (KIAA1429) and relaxin family peptide receptor 1 (RXFP1) in NSCLC. METHODS: A quantitative real-time polymerase chain reaction was used to analyze the mRNA levels of KIAA1429 and RXFP1 in NSCLC. After silencing KIAA1429 or RXFP1 in NSCLC cells, changes in the malignant phenotypes of NSCLC cells were assessed using cell counting kit-8, colony formation, and transwell assays. Finally, the m6A modification of RXFP1 mediated by KIAA1429 was confirmed using luciferase, methylated RNA immunoprecipitation, and western blot assays. RESULTS: KIAA1429 and RXFP1 were upregulated and downregulated in NSCLC, respectively. Silencing of KIAA1429 attenuated the viability, migration, and invasion of NSCLC cells, whereas silencing of RXFP1 showed the opposite function in NSCLC cells. Moreover, RXFP1 expression was inhibited by KIAA1429 via m6A-modification. Therefore, silencing RXFP1 reversed the inhibitory effect of KIAA1429 knockdown in NSCLC cells. CONCLUSION: Our findings confirmed that the KIAA1429/RXFP1 axis promotes NSCLC tumorigenesis. This is the first study to reveal the inhibitory function of RXFP1 in NSCLC via KIAA1429-mediated m6A-modification. These findings may help identify new biomarkers for targeted NSCLC therapy.

11.
Sci Total Environ ; 917: 170146, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38278247

RESUMO

With the widespread use of controlled-release nanopesticides in field conditions, the interactions between these nanopesticides and biological systems are complex and highly uncertain. The toxicity of iron-based metal organic frameworks (CF@MIL-101-SL) loaded with chlorfenapyr (CF) to terrestrial invertebrate earthworms in filter paper and soil environments and the potential mechanisms of interactions in the nanopesticide-earthworm-cornfield soil microorganism system were investigated for the first time. The results showed that CF@MIL-101-SL was more poisonous to earthworms in the contact filter paper test than suspension concentrate of CF (CF-SC), and conversely, CF@MIL-101-SL was less poisonous to earthworms in the soil test. In the soil environment, the CF@MIL-101-SL treatment reduced oxidative stress and the inhibition of detoxifying enzymes, and reduced tissue and cellular substructural damage in earthworms compared to the CF-SC treatment. Long-term treatment with CF@MIL-101-SL altered the composition and abundance of microbial communities with degradative functions in the earthworm intestine and soil and affected the soil nitrogen cycle by modulating the composition and abundance of nitrifying and denitrifying bacterial communities in the earthworm intestine and soil, confirming that soil microorganisms play an important role in reducing the toxicity of CF@MIL-101-SL to earthworms. In conclusion, this study provides new insights into the ecological risks of nanopesticides to soil organisms.


Assuntos
Estruturas Metalorgânicas , Oligoquetos , Piretrinas , Poluentes do Solo , Animais , Oligoquetos/fisiologia , Solo/química , Poluentes do Solo/análise
12.
Mol Plant Pathol ; 25(3): e13441, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462774

RESUMO

RNA interference, or RNA silencing, is an important defence mechanism against viroid infection in plants. Plants encode multiple DICER-LIKE (DCL) proteins that are key components of the RNA silencing pathway. However, the roles of different DCLs in defence responses against viroid infection remain unclear. Here, we determined the function of tomato DCL2b (SlDCL2b) in defence responses against potato spindle tuber viroid (PSTVd) infection using SlDCL2b loss-of-function tomato mutant plants. Compared with wild-type plants, mutant plants were more susceptible to PSTVd infection, developing more severe symptoms earlier and accumulating higher levels of PSTVd RNAs. Moreover, we verified the feedback mechanism for the regulation of SlDCL2b expression by miR6026. Functional blocking of tomato miR6026, by expressing its target mimics, can enhance resistance to PSTVd infection in tomato plants. These findings deepen the current understanding of RNAi-based resistance against viroid infection and provide a potentially new strategy for viroid control.


Assuntos
Solanum lycopersicum , Solanum tuberosum , Viroides , Viroides/genética , Solanum lycopersicum/genética , Solanum tuberosum/genética , Interferência de RNA , RNA Viral/metabolismo
13.
ACS Nano ; 18(8): 6533-6549, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38355215

RESUMO

Conventional agrochemicals are underutilized due to their large particle sizes, poor foliar retention rates, and difficult translocation in plants, and the development of functional nanodelivery carriers with high adhesion to the plant body surface and efficient uptake and translocation in plants remains challenging. In this study, a nanodelivery system based on a pectin-encapsulated iron-based MOF (TF@Fe-MOF-PT NPs) was constructed to enhance the utilization of thifluzamide (TF) in rice plants by taking advantage of the pectin affinity for plant cell walls. The prepared TF@Fe-MOF-PT NPs exhibited an average particle size of 126.55 nm, a loading capacity of 27.41%, and excellent dual-stimulus responses to reactive oxygen species and pectinase. Foliar washing experiments showed that the TF@Fe-MOF-PT NPs were efficiently adhered to the surfaces of rice leaves and stems. Confocal laser scanning microscopy showed that fluorescently labeled TF@Fe-MOF-PT NPs were bidirectionally delivered through vascular bundles in rice plants. The in vitro bactericidal activity of the TF@Fe-MOF-PT NPs showed better inhibitory activity than that of a TF suspension (TF SC), with an EC50 of 0.021 mg/L. A greenhouse test showed that the TF@Fe-MOF-PT NPs were more effective than TF SC at 7 and 14 d, with control effects of 85.88 and 78.59%, respectively. It also reduced the inhibition of seed stem length and root length by TF SC and promoted seedling growth. These results demonstrated that TF@Fe-MOF-PT NPs can be used as a pesticide nanodelivery system for efficient delivery and intelligent release in plants and applied for sustainable control of pests and diseases.


Assuntos
Fungicidas Industriais , Estruturas Metalorgânicas , Nanopartículas , Ferro , Fungicidas Industriais/farmacologia , Pectinas
14.
Sci Rep ; 14(1): 11342, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762588

RESUMO

The identification and quantification of the ecological risks, sources and distribution of heavy metals in purple soils are essential for regional pollution control and management. In this study, geo-accumulation index (Igeo), enrichment factor (EF), pollution index (PI), potential ecological risk index (RI), principal component analysis (PCA) model and geographical detector (GD) were combined to evaluate the status, ecological risk, and sources of heavy metals (HMs) in soils from a typical purple soil areas of Sichuan province. The results showed that the average contents of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in purple soil were 7.77, 0.19, 69.5, 27.9, 0.077, 30.9, 26.5 mg/kg and 76.8 mg/kg, and the Igeo, EF and RI of topsoil Hg and Cd in designated area was the highest, and the average contents of Hg and Cd in topsoil were obviously greater than respective soil background value in Sichuan province and purple soil. The hot spots for the spatial distribution of 8 HMs were mainly focused in the southwest and northeast of the designated area, and there were also significant differences for 8 HMs distribution characteristics in the profile soil. Cu comes from both anthropogenic and natural sources, Zn, Ni and Cr mainly come from natural sources, but As, Pb, Hg and Cd mainly derived from human activities. GD results showed that soil texture (X18), altitude (X4), total nitrogen (TN), clay content (X3), sand content (X2) and silt content (X1) had the greatest explanatory power to 8 HMs spatial differentiation.This study provides a reference for understanding the status and influencing factors of HM pollution in typical purple soil, and lays a theoretical foundation for the environmental treatment of purple soil in China.

15.
Commun Biol ; 7(1): 603, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769470

RESUMO

The Northern Hemisphere temperate forests exhibit a disjunct distributional pattern in Europe, North America, and East Asia. Here, to reveal the promoter of intercontinental disjunct distribution, Fraxinus was used as a model organism to integrate abundant fossil evidence with high-resolution phylogenies in a phytogeographic analysis. We constructed a robust phylogenetic tree using genomic data, reconstructed the geographic ancestral areas, and evaluated the effect of incorporating fossil information on the reconstructed biogeographic history. The phylogenetic relationships of Fraxinus were highly resolved and divided into seven clades. Fraxinus originated in western North America during Eocene, and six intercontinental dispersal events and five intercontinental vicariance events were occured. Results suggest that climate change and vicariance contributed to the intercontinental disjunct distribution pattern of Fraxinus. Moreover, results highlight the necessity of integrating phylogenetic relationship and fossil to improve the reliability of inferred biogeographic events and our understanding of the processes underlying disjunct distributions.


Assuntos
Mudança Climática , Fósseis , Fraxinus , Filogenia , Filogeografia , Fraxinus/genética , Dispersão Vegetal
16.
J Hazard Mater ; 474: 134807, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850939

RESUMO

Nanocrop protectants have attracted much attention as sustainable platforms for controlling pests and diseases and improving crop nutrition. Here, we reported the fungicidal activity and disease inhibition potential of pectin-coated metal-iron organic framework nanoparticles (Fe-MOF-PT NPs) against rice stripe blight (RSB). An in vitro bacterial inhibition assay showed that Fe-MOF-PT NPs (80 mg/L) significantly inhibited mycelial growth and nucleus formation. The Fe-MOF-PT NPs adsorbed to the surface of mycelia and induced toxicity by disrupting cell membranes, mitochondria, and DNA. The results of a nontargeted metabolomics analysis showed that the metabolites of amino acids and their metabolites, heterocyclic compounds, fatty acids, and nucleotides and their metabolites were significantly downregulated after treatment with 80 mg/L NPs. The difference in metabolite abundance between the CK and Fe-MOF-PT NPs (80 mg/L) treatment groups was mainly related to nucleotide metabolism, pyrimidine metabolism, purine metabolism, fatty acid metabolism, and amino acid metabolism. The results of the greenhouse experiment showed that Fe-MOF-PT NPs improved rice resistance to R. solani by inhibiting mycelial invasion, enhancing antioxidant enzyme activities, activating the jasmonic acid signaling pathway, and enhancing photosynthesis. These findings indicate the great potential of Fe-MOF-PT NPs as a new RSB disease management strategy and provide new insights into plant fungal disease management.


Assuntos
Ferro , Estruturas Metalorgânicas , Oryza , Pectinas , Doenças das Plantas , Rhizoctonia , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/microbiologia , Rhizoctonia/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Ferro/química , Ferro/metabolismo , Pectinas/química , Pectinas/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Resistência à Doença/efeitos dos fármacos
17.
IEEE Trans Med Imaging ; PP2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949932

RESUMO

Analysis of functional connectivity networks (FCNs) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has greatly advanced our understanding of brain diseases, including Alzheimer's disease (AD) and attention deficit hyperactivity disorder (ADHD). Advanced machine learning techniques, such as convolutional neural networks (CNNs), have been used to learn high-level feature representations of FCNs for automated brain disease classification. Even though convolution operations in CNNs are good at extracting local properties of FCNs, they generally cannot well capture global temporal representations of FCNs. Recently, the transformer technique has demonstrated remarkable performance in various tasks, which is attributed to its effective self-attention mechanism in capturing the global temporal feature representations. However, it cannot effectively model the local network characteristics of FCNs. To this end, in this paper, we propose a novel network structure for Local sequential feature Coupling Global representation learning (LCGNet) to take advantage of convolutional operations and self-attention mechanisms for enhanced FCN representation learning. Specifically, we first build a dynamic FCN for each subject using an overlapped sliding window approach. We then construct three sequential components (i.e., edge-to-vertex layer, vertex-to-network layer, and network-to-temporality layer) with a dual backbone branch of CNN and transformer to extract and couple from local to global topological information of brain networks. Experimental results on two real datasets (i.e., ADNI and ADHD-200) with rs-fMRI data show the superiority of our LCGNet.

18.
Commun Biol ; 7(1): 1002, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152250

RESUMO

The processes of forming lineages undergoing widespread radiations remain a knowledge gap that is fundamental to our understanding of the geographic distributions of species. Although early studies emphasized the importance of dispersal ability and historical migration events, key innovations that promote rapid diversification and/or adaptation to new habitats may also strongly influence distribution ranges. Juniperus is the second largest genus of conifers and is widely distributed throughout the Northern Hemisphere. Here, we used phylogenetic, phenotypic, and climatic data to investigate the contributions of these processes to the wide distribution and rapid diversification of Juniperus. Combining a time-scaled phylogeny and macroevolutionary theory, we show that the key innovations of berry-like seed cones and dioecy promoted the rapid diversification of Juniperus and that increased dispersal ability promoted allopatric speciation. Ecological niches had significant divergence among different clades of Juniperus. Biogeographic results supported multiple long-distance dispersal events and niche variation that contributed to the modern range of Juniperus, while both phenotypic adaptation and ecological opportunity probably drove its distribution range. Our findings suggest that the current widespread distribution is likely the result of significant divergence driven by niche variation in which ecological opportunities from key innovation and phenotypic divergence.


Assuntos
Ecossistema , Juniperus , Filogenia , Juniperus/genética , Evolução Biológica , Fenótipo , Filogeografia , Biodiversidade
19.
PhytoKeys ; 237: 161-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38298498

RESUMO

High levels of intra-specific polymorphism and frequent hybridisation make it difficult to define species and correctly apply their scientific names. Populus L. is a challenging genus with plentiful natural and artificial hybrids. This study is a part of the project 'Flora of Pan-Himalaya' and aims to determine the taxonomic identity of P.gonggaensis N. Chao & J.R. He and to find out whether it is of hybrid origin. Whole-genome sequencing data were obtained from 57 samples. The SNP matrix was developed for phylogenetic reconstruction, ABBA-BABA statistics, PCA and ADMIXTURE analysis. The results indicate that P.gonggaensis is a spontaneous hybrid between P.lasiocarpa and P.cathayana. This study points out the importance of SNP data and comprehensive analyses for discovering the potential interspecific hybridisation and clarifies the usage of the name. In addition, the lectotype of P.gonggaensis was designated.

20.
ACS Appl Mater Interfaces ; 16(8): 9713-9724, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373060

RESUMO

Enhancing the performance of traditional pesticide formulations by improving their leaf surface wetting capabilities is a crucial approach for maximizing the pesticide efficiency. This study develops an emulsifiable concentrate (EC) of 4.5% ß-cypermethrin containing Brucea javanica oil (BJO). The incorporation of BJO aims to improve the leaf-wetting properties of the EC formulation and enhance its insecticidal effectiveness. The droplet size and emulsion characteristics of ß-CYP EC emulsion with varying concentrations of the emulsifier were evaluated, and changes after incorporating BJO were assessed to develop the optimal formulation. A comprehensive comparison was conducted among commercial 4.5% ß-cypermethrin EC (ß-CYP EC-1), 4.5% ß-cypermethrin EC with BJO (ß-CYP EC-2), and 4.5% ß-cypermethrin EC without BJO (ß-CYP EC-3). This comparison encompassed various factors including storage stability, insecticidal activity, cytotoxicity, and wetting performance on cabbage leaves. The results indicated that the ideal emulsifier concentration was 15% emulsifier 0201B. ß-CYP EC-2 demonstrated superior wetting properties on cabbage leaves (the wetting performance of ß-CYP EC-2 emulsion on cabbage leaves is 2.60 times that of the ß-CYP EC-1 emulsion), heightened insecticidal activity against the third larvae of Plutella xylostella [diamondback moth (DBM)] [the insecticidal activity of the ß-CYP EC-2 emulsion against the third larvae of DBM is 1.93 times that of the ß-CYP EC-1 emulsion (12 h)], and more obvious inhibitory effects on the proliferation of DBM embryo cells than the other tested formulations. These findings have significant implications for advancing pest control strategies and promoting sustainable and effective agricultural practices.


Assuntos
Brucea , Inseticidas , Piretrinas , Brucea javanica , Óleos de Plantas/farmacologia , Emulsões , Inseticidas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA