Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 2): 118920, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657849

RESUMO

Long-term wastewater irrigation leads to the loss of calcium carbonate (CaCO3) in the tillage layer of calcareous land, which irreversibly damages the soil's ability to retain cadmium (Cd). In this study, we selected calcareous agricultural soil irrigated with wastewater for over 50 years to examine the recalcification effects of sugar beet factory lime (SBFL) at doses of 0%, 2.5%, 5%, and 10%. We found that SBFL promoted Cd transformation in the soil from active exchangeable species to more stable carbonate-bonded and residual species, which the X-ray diffraction patterns also confirmed results that CdSO4 reduced while CdS and CaCdCO3 increased. Correspondingly, the soil bioavailable Cd concentration was significantly reduced by 65.6-84.7%. The Cd concentrations in maize roots and shoots were significantly reduced by 11.7-50.6% and 13.0-70.0%, respectively, thereby promoting maize growth. Nevertheless, SBFL also increased the proportion of plant-unavailable phosphorus (P) in Ca8-P and Ca10-P by 4.3-13.0% and 10.7-25.9%, respectively, reducing the plant-available P (Olsen P) content by 5.2-22.1%. Consequently, soil P-acquiring associated enzyme (alkaline phosphatase) activity and microbial (Proteobacteria, Bacteroidota, and Actinobacteria) community abundance significantly increased. Our findings showed that adding SBFL to wastewater-irrigated calcareous soil stabilized Cd, but exacerbated P limitation. Therefore, it is necessary to alleviate P limitations in the practice of recalcifying degraded calcareous land.


Assuntos
Cádmio , Carbonato de Cálcio , Fósforo , Poluentes do Solo , Solo , Águas Residuárias , Zea mays , Cádmio/análise , Cádmio/química , Fósforo/análise , Águas Residuárias/química , Poluentes do Solo/análise , Poluentes do Solo/química , Solo/química , Zea mays/química , Carbonato de Cálcio/química , Irrigação Agrícola/métodos , Microbiologia do Solo , Óxidos , Compostos de Cálcio
2.
iScience ; 27(3): 109115, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38384834

RESUMO

As a flagship species of biodiversity conservation globally, the giant panda has seasonal migration to cope with seasonal changes in available resources. Here, we have mapped the spatial distribution of multi-seasonal habitats of the giant panda across the Baishuijiang reserve in China. Results show that the spatial patterns are different in different seasons, generally, large patches are observed in the western part, while staggered clusters occur in the middle and eastern parts. That is, suitable habitats for giant pandas are mostly distributed in the west part. More than 75% of the predicted suitable habitats are within the core zone of the reserve year-round, indicating the core zone essentially meet giant panda's ecological needs, although this range could potentially be expanded. This study provides valuable insights into the spatiotemporal migration patterns of endangered species and helps to guide conservation planning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA