Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 89(4): 2238-2246, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38296256

RESUMO

Visible-light-induced regioselective cascade radical cyclization of α-bromocarbonyls for the synthesis of benzazepine derivatives is described. In the presence of fac-Ir(ppy)3 (2.0 mol %) as a photocatalyst, 2,6-lutidine as a base, and dichloromethane as a solvent, the reactions proceed smoothly to afford seven-membered rings in good yields. This protocol features a broad substrate scope, excellent functional group tolerance, and mild reaction conditions. Preliminary mechanistic studies reveal that the generation of the α-carbon radical is more prone to react with the 1,1-diphenylethylene tethered acrylamide to generate the stable seven-membered heterocycle.

2.
J Neurosci ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35882560

RESUMO

A rod-shaped appendage called a primary cilium projects from the soma of most central neurons in the mammalian brain. The importance of cilia within the nervous system is highlighted by the fact that human syndromes linked to primary cilia dysfunction, collectively termed ciliopathies, are associated with numerous neuropathologies, including hyperphagia-induced obesity, neuropsychiatric disorders, and learning and memory deficits. Neuronal cilia are enriched with signaling molecules, including specific G protein-coupled receptors (GPCRs) and their downstream effectors, suggesting they act as sensory organelles that respond to neuromodulators in the extracellular space. We previously showed that GPCR ciliary localization is disrupted in neurons from mouse models of the ciliopathy Bardet-Biedl syndrome (BBS). Based on this finding we hypothesized that mislocalization of ciliary GPCRs may impact receptor signaling and contribute to the BBS phenotypes. Here, we show that disrupting localization of the ciliary GPCR dopamine receptor 1 (D1) in male and female mice, either by loss of a BBS protein or loss of the cilium itself, specifically in D1-expressing neurons, results in obesity. Interestingly, the weight gain is associated with reduced locomotor activity, rather than increased food intake. Moreover, loss of a BBS protein or cilia on D1-expressing neurons leads to a reduction in D1-mediated signaling. Together, these results indicate that cilia impact D1 activity in the nervous system and underscore the importance of neuronal cilia for proper GPCR signaling.SIGNIFICANCE STATEMENT:Most mammalian neurons possess solitary appendages called primary cilia. These rod-shaped structures are enriched with signaling proteins, such as G protein-coupled receptors (GPCRs), suggesting they respond to neuromodulators. This study examines the consequences of disrupting ciliary localization of the GPCR dopamine receptor 1 (D1) in D1-expressing neurons. Remarkably, mice that have either abnormal accumulation of D1 in cilia or loss of D1 ciliary localization become obese. In both cases the obesity is associated with lower locomotor activity rather than overeating. As D1 activation increases locomotor activity, these results are consistent with a reduction in D1 signaling. Indeed, we found that D1-mediated signaling is reduced in brain slices from both mouse models. Thus, cilia impact D1 signaling in the brain.

3.
J Neurosci ; 42(20): 4215-4228, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35440489

RESUMO

Traumatic brain injury (TBI) is associated with an increased risk of cognitive, psychiatric, and neurodegenerative complications that may develop after injury. Increased microglial reactivity following TBI may underlie chronic neuroinflammation, neuropathology, and exaggerated responses to immune challenges. Therefore, the goal of this study was to force turnover of trauma-associated microglia that develop after diffuse TBI and determine whether this alleviated chronic inflammation, improved functional recovery and attenuated reduced immune reactivity to lipopolysaccharide (LPS) challenge. Male mice received a midline fluid percussion injury (mFPI) and 7 d later were subjected to a forced microglia turnover paradigm using CSF1R antagonism (PLX5622). At 30 d postinjury (dpi), cortical gene expression, dendritic complexity, myelin content, neuronal connectivity, cognition, and immune reactivity were assessed. Myriad neuropathology-related genes were increased 30 dpi in the cortex, and 90% of these gene changes were reversed by microglial turnover. Reduced neuronal connectivity was evident 30 dpi and these deficits were attenuated by microglial turnover. TBI-associated dendritic remodeling and myelin alterations, however, remained 30 dpi independent of microglial turnover. In assessments of functional recovery, increased depressive-like behavior, and cognitive impairment 30 dpi were ameliorated by microglia turnover. To investigate microglial priming and reactivity 30 dpi, mice were injected intraperitoneally with LPS. This immune challenge caused prolonged lethargy, sickness behavior, and microglial reactivity in the TBI mice. These extended complications with LPS in TBI mice were prevented by microglia turnover. Collectively, microglial turnover 7 dpi alleviated behavioral and cognitive impairments associated with microglial priming and immune reactivity 30 dpi.SIGNIFICANCE STATEMENT A striking feature of traumatic brain injury (TBI), even mild injuries, is that over 70% of individuals have long-term neuropsychiatric complications. Chronic inflammatory processes are implicated in the pathology of these complications and these issues can be exaggerated by immune challenge. Therefore, our goal was to force the turnover of microglia 7 d after TBI. This subacute 7 d postinjury (dpi) time point is a critical transitional period in the shift toward chronic inflammatory processes and microglia priming. This forced microglia turnover intervention in mice attenuated the deficits in behavior and cognition 30 dpi. Moreover, microglia priming and immune reactivity after TBI were also reduced with microglia turnover. Therefore, microglia represent therapeutic targets after TBI to reduce persistent neuroinflammation and improve recovery.


Assuntos
Lesões Encefálicas Difusas , Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Animais , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Difusas/patologia , Lesões Encefálicas Traumáticas/patologia , Disfunção Cognitiva/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo
4.
J Org Chem ; 88(23): 16556-16565, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971950

RESUMO

Herein, an N-heterocyclic carbene (NHC)-catalyzed tandem cyclization/addition/cyclization reaction of 2-isocyanobiaryls and α-bromo-N-cinnamylamides for the synthesis of 2-pyrrolidinone-functionalized phenanthridines is developed. This protocol features a radical cascade process, broad substrate scope, and good functional group compatibility under metal- and oxidant-free reaction conditions.

5.
J Neurosci ; 41(7): 1597-1616, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33452227

RESUMO

Traumatic brain injury (TBI) can lead to significant neuropsychiatric problems and neurodegenerative pathologies, which develop and persist years after injury. Neuroinflammatory processes evolve over this same period. Therefore, we aimed to determine the contribution of microglia to neuropathology at acute [1 d postinjury (dpi)], subacute (7 dpi), and chronic (30 dpi) time points. Microglia were depleted with PLX5622, a CSF1R antagonist, before midline fluid percussion injury (FPI) in male mice and cortical neuropathology/inflammation was assessed using a neuropathology mRNA panel. Gene expression associated with inflammation and neuropathology were robustly increased acutely after injury (1 dpi) and the majority of this expression was microglia independent. At 7 and 30 dpi, however, microglial depletion reversed TBI-related expression of genes associated with inflammation, interferon signaling, and neuropathology. Myriad suppressed genes at subacute and chronic endpoints were attributed to neurons. To understand the relationship between microglia, neurons, and other glia, single-cell RNA sequencing was completed 7 dpi, a critical time point in the evolution from acute to chronic pathogenesis. Cortical microglia exhibited distinct TBI-associated clustering with increased type-1 interferon and neurodegenerative/damage-related genes. In cortical neurons, genes associated with dopamine signaling, long-term potentiation, calcium signaling, and synaptogenesis were suppressed. Microglial depletion reversed the majority of these neuronal alterations. Furthermore, there was reduced cortical dendritic complexity 7 dpi, reduced neuronal connectively 30 dpi, and cognitive impairment 30 dpi. All of these TBI-associated functional and behavioral impairments were prevented by microglial depletion. Collectively, these studies indicate that microglia promote persistent neuropathology and long-term functional impairments in neuronal homeostasis after TBI.SIGNIFICANCE STATEMENT Millions of traumatic brain injuries (TBIs) occur in the United States alone each year. Survivors face elevated rates of cognitive and psychiatric complications long after the inciting injury. Recent studies of human brain injury link chronic neuroinflammation to adverse neurologic outcomes, suggesting that evolving inflammatory processes may be an opportunity for intervention. Here, we eliminate microglia to compare the effects of diffuse TBI on neurons in the presence and absence of microglia and microglia-mediated inflammation. In the absence of microglia, neurons do not undergo TBI-induced changes in gene transcription or structure. Microglial elimination prevented TBI-induced cognitive changes 30 d postinjury (dpi). Therefore, microglia have a critical role in disrupting neuronal homeostasis after TBI, particularly at subacute and chronic timepoints.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/patologia , Encefalite/patologia , Microglia/patologia , Neurônios/patologia , Animais , Sinalização do Cálcio/genética , Expressão Gênica/efeitos dos fármacos , Interferons , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Compostos Orgânicos/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Supressão Genética
6.
J Org Chem ; 87(15): 10277-10284, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35791911

RESUMO

Visible-light-induced radical cascade acylation/cyclization/aromatization of N-propargyl aromatic amines and acyl oxime esters for the construction of 3-acylated quinolines is developed. This approach uses acyl oxime esters as the precursor of acyl radicals as well as acylation reagents, Eosin Y as the photocatalyst, and acetonitrile as the solvent, providing a convenient route toward 3-acylated quinolines via the C-C bond cleavage of acyl oxime esters.

7.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(1): 85-89, 2022 Jan 15.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-35177181

RESUMO

OBJECTIVES: To study the value of heparin-binding protein (HBP) in the diagnosis of severe infection in children. METHODS: This study was a prospective observational study. The medical data of children who were admitted to the pediatric intensive care unit due to infection from January 2019 to January 2020 were collected. According to the diagnostic criteria for severe sepsis and sepsis, the children were divided into a severe sepsis group with 49 children, a sepsis group with 82 children, and a non-severe infection group with 33 children. The three groups were compared in terms of related biomarkers such as plasma HBP, serum C-reactive protein, serum procalcitonin, and platelet count. The receiver operating characteristic (ROC) curve was plotted to investigate the value of plasma HBP level in the diagnosis of severe infection (including severe sepsis and sepsis). RESULTS: The severe sepsis and sepsis groups had a significantly higher plasma HBP level on admission than the non-severe infection group (P<0.05). Compared with the sepsis and non-severe groups, the severe sepsis group had significantly higher serum levels of C-reactive protein and procalcitonin and a significantly lower platelet count (P<0.05). Plasma HBP level had an area under the ROC curve of 0.590 in determining severe infection, with a sensitivity of 38.0% and a specificity of 82.4% (P<0.05). CONCLUSIONS: There is an increase in plasma HBP level in children with severe infection, and plasma HBP level has a lower sensitivity but a higher specificity in the diagnosis of severe infection and can thus be used as one of the markers for the judgment of severe infection in children.


Assuntos
Proteínas Sanguíneas , Sepse , Peptídeos Catiônicos Antimicrobianos , Biomarcadores , Proteína C-Reativa/análise , Criança , Humanos , Pró-Calcitonina , Estudos Prospectivos , Curva ROC , Sepse/diagnóstico
8.
Macromol Rapid Commun ; 39(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29194838

RESUMO

Hydrogels are soft materials that have found multiple applications in biomedicine and represent a good platform for the introduction of molecular switches and synthetic machines into macromolecular networks. Tuning their mechanical properties reversibly with light is appealing for a variety of advanced applications and has been demonstrated in the past; however, their activation typically requires the use of UV light, which displays several drawbacks related to its damaging character and limited penetration in tissues and materials. This study circumvents this limitation by introducing all-visible ortho-fluoroazobenzene switches into a hydrophilic network, which, as a result, can be activated with green or blue light. Photoisomerization of the photochromic moieties is accompanied by a reversible tuning of the elastic modulus. The translation of molecular isomerization within the network into macroscopic modulation of its mechanical properties is attributed to different aggregation tendencies of the E and Z isomers of the azobenzene derivatives.


Assuntos
Compostos Azo/química , Hidrogéis/química , Luz , Elasticidade , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Estereoisomerismo
9.
Chemistry ; 23(23): 5434-5438, 2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28370503

RESUMO

Stimuli-responsive molecules change their properties when exposed to external signals, such as light, and enable the preparation of smart materials. UV light, which often destroys organic materials, is typically required for activating the desired response of photoswitchable compounds, significantly limiting the potential applications of light-operated smart materials. Herein, we present the first metal-organic framework (MOF), which enables reversible modulation of key properties upon irradiation with visible light only. The fluorinated azobenzene side groups in the MOF structure can be reversibly switched between the trans and cis state by green and violet light, avoiding UV light. It was demonstrated that the uptake of guest molecules by these MOF films can be switched in a fully remote-controlled way. The membrane separation of hydrogen/hydrocarbon mixtures was investigated. The light-induced changes of the MOF pore size result in the switching of the permeation and of the selection factor.

10.
Chemistry ; 22(2): 746-52, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26617393

RESUMO

The ability to control the interplay of materials with low-energy photons is important as visible light offers several appealing features compared to ultraviolet radiation (less damaging, more selective, predominant in the solar spectrum, possibility to increase the penetration depth). Two different metal-organic frameworks (MOFs) were synthesized from the same linker bearing all-visible ortho-fluoroazobenzene photoswitches as pendant groups. The MOFs exhibit different architectures that strongly influence the ability of the azobenzenes to isomerize inside the voids. The framework built with Al-based nodes has congested 1D channels that preclude efficient isomerization. As a result, local light-heat conversion can be used to alter the CO2 adsorption capacity of the material on exposure to green light. The second framework, built with Zr nodes, provides enough room for the photoswitches to isomerize, which leads to a unique bistable photochromic MOF that readily responds to blue and green light. The superiority of green over UV irradiation was additionally demonstrated by reflectance spectroscopy and analysis of digested samples. This material offers promising perspectives for liquid-phase applications such as light-controlled catalysis and adsorptive separation.

11.
Proc Natl Acad Sci U S A ; 109(30): 12189-94, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22778412

RESUMO

Inflammatory cytokine interleukin-1 (IL-1) performs multiple functions in the central nervous system. The type 1 IL-1 receptor (IL-1R1) and the IL-1 receptor accessory protein (IL-1RAcP) form a functional IL-1 receptor complex that is thought to mediate most, if not all, IL-1-induced effects. Several recent studies, however, suggest the existence of a heretofore-unidentified receptor for IL-1. In this study, we report that the IL-1R1 gene contains an internal promoter that drives the transcription of a shortened IL-1R1 mRNA. This mRNA is the template for a unique IL-1R protein that is identical to IL-1R1 at the C terminus, but with a shorter extracellular domain at the N terminus. We have termed this molecule IL-1R3. The mRNA and protein for IL-1R3 are expressed in normal and two strains of commercially available IL-1R1 knockout mice. Western blot analysis shows IL-1R3 is preferentially expressed in neural tissues. Furthermore, IL-1ß binds specifically to IL-1R3 when it is complexed with the newly discovered alternative IL-1 receptor accessory protein, IL-1RAcPb. Stimulation of neurons expressing both IL-1R3 and IL-1RAcPb with IL-1ß causes fast activation of the Akt kinase, which leads to an increase in voltage-gated potassium current. These results demonstrate that IL-1R3/IL-1RAcPb complex mediates a unique subset of IL-1 activity that accounts for many previously unexplained IL-1 effects in the central nervous system.


Assuntos
Interleucina-1/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Ativação Enzimática/fisiologia , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Camundongos , Camundongos Knockout , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Tipo I de Interleucina-1/genética
12.
Chemistry ; 20(50): 16492-501, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25352421

RESUMO

Improving the photochemical properties of molecular photoswitches is crucial for the development of light-responsive systems in materials and life sciences. ortho-Fluoroazobenzenes are a new class of rationally designed photochromic azo compounds with optimized properties, such as the ability to isomerize with visible light only, high photoconversions, and unprecedented robust bistable character. Introducing σ-electron-withdrawing F atoms ortho to the NN unit leads to both an effective separation of the n→π* bands of the E and Z isomers, thus offering the possibility of using these two transitions for selectively inducing E/Z isomerizations, and greatly enhanced thermal stability of the Z isomers. Additional para-electron-withdrawing groups (EWGs) work in concert with ortho-F atoms, giving rise to enhanced separation of the n→π* transitions. A comprehensive study of the effect of substitution on the key photochemical properties of ortho-fluoroazobenzenes is reported herein. In particular, the position, number, and nature of the EWGs have been varied, and the visible light photoconversions, quantum yields of isomerization, and thermal stabilities have been measured and rationalized by DFT calculations.

13.
Am J Infect Control ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964659

RESUMO

BACKGROUND: Dental outpatient departments, characterized by close proximity and unmasked patients, present a considerable risk of respiratory infections for healthcare workers (HCWs). However, the lack of comprehensive data on close contact (<1.5m) between HCWs and patients poses a significant obstacle to the development of targeted control strategies. METHODS: An observation study was conducted at a hospital in Shenzhen, China, utilizing depth cameras with machine learning to capture close contact behaviors of patients with HCWs. Additionally, questionnaires were administered to collect patient demographics. RESULTS: The study included 200 patients, 10 dental practitioners and 10 nurses. Patients had significantly higher close contact rates with dental practitioners (97.5%) compared to nurses (72.8%; P<0.001). The reason for the visit significantly influenced patient-practitioner (P=0.018) and patient-nurse (P=0.007) close contact time, with the highest values observed in prosthodontics and orthodontics patients. Furthermore, patient age also significantly impacted the close contact rate with nurses (P=0.024), with the highest rate observed in patients below 14 years old at 85% [IQR:70-93]. CONCLUSION: Dental outpatient departments exhibit high HCW-patient close contact rates, influenced by visit purpose and patient age. Enhanced infection control measures are warranted, particularly for prosthodontics and orthodontics patients or those below 14 years old.

14.
Org Lett ; 25(32): 6072-6076, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37550857

RESUMO

A novel and efficient strategy for the synthesis of a series of structurally interesting benzazepine derivatives via an N-heterocyclic carbene-catalyzed regioselective intramolecular radical cyclization has been developed. This protocol features good regioselectivity, good functional-group compatibility, and wide substrate scope, providing a transition-metal- and oxidant-free pathway to access the seven-membered rings under mild reaction conditions. Additionally, further transformation of benzazepines and a large-scale experiment were also conducted.

15.
Dalton Trans ; 52(33): 11591-11600, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37548591

RESUMO

Exploiting efficient and stable photocatalysts is the primary goal of photocatalytic water splitting for H2 production. In this work, a sea urchin-like bimetallic NiCo2O4-decorated ZnIn2S4 heterojunction was fabricated via a solvent evaporation method. Investigation shows that the introduction NiCo2O4 can expand the UV-vis absorption range, enhance the absorption intensity, promote the charge separation, decrease the charge transfer resistance, induce more active sites, and decrease the H2 evolution overpotential of the composite. Besides, the charge transfer between NiCo2O4 and ZnIn2S4 follows a Z-scheme route based on the ˙OH radical capture experiments; this can preserve the strong oxidation-reduction reaction ability of photogenerated electrons and holes, leading to a faster H2 evolution rate, which reaches 17.28 mmol g-1 h-1 over the 4.8%-NiCo2O4/ZnIn2S4 composite under 300 W Xe lamp irradiation in 20 vol% triethanolamine (TEOA) solution and is 3.0 times higher than that of ZnIn2S4. In addition, NiCo2O4/ZnIn2S4 also has excellent stability during 5 consecutive cycles. This work provides an effective method for constructing a highly effective Z-scheme heterojunction system for photocatalytic H2 production.

16.
NPJ Sci Food ; 7(1): 35, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460765

RESUMO

More Americans are consuming diets higher in saturated fats and refined sugars than ever before. These trends could have serious consequences for the older population because high-fat diet (HFD) consumption, known to induce neuroinflammation, has been shown to accelerate and aggravate memory declines. We have previously demonstrated that short-term HFD consumption, which does not evoke obesity-related comorbidities, produced profound impairments to hippocampal-dependent memory in aged rats. These impairments were precipitated by increases in proinflammatory cytokines, primarily interleukin-1 beta (IL-1ß). Here, we explored the extent to which short-term HFD consumption disrupts hippocampal synaptic plasticity, as measured by long-term potentiation (LTP), in young adult and aged rats. We demonstrated that (1) HFD disrupted late-phase LTP in the hippocampus of aged, but not young adult rats, (2) HFD did not disrupt early-phase LTP, and (3) blockade of the IL-1 receptor rescued L-LTP in aged HFD-fed rats. These findings suggest that hippocampal memory impairments in aged rats following HFD consumption occur through the deterioration of synaptic plasticity and that IL-1ß is a critical driver of that deterioration.

17.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37163097

RESUMO

Adult neural stem and progenitor cells (NSPCs) reside in the dentate gyrus (DG) of the hippocampus throughout the lifespan of most mammalian species. In addition to generating new neurons, NSPCs may alter their niche via secretion of growth factors and cytokines. We recently showed that adult DG NSPCs secrete vascular endothelial growth factor (VEGF), which is critical for maintaining adult neurogenesis. Here, we asked whether NSPC-derived VEGF alters hippocampal function independent of adult neurogenesis. We found that loss of NSPC-derived VEGF acutely impaired hippocampal memory, caused neuronal hyperexcitability and exacerbated excitotoxic injury. We also found that NSPCs generate substantial proportions of total DG VEGF and VEGF disperses broadly throughout the DG, both of which help explain how this anatomically-restricted cell population could modulate function broadly. These findings suggest that NSPCs actively support and protect DG function via secreted VEGF, thereby providing a non-neurogenic functional dimension to endogenous NSPCs.

18.
Proc Natl Acad Sci U S A ; 106(10): 4006-11, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19223578

RESUMO

Recent advances have underscored cell-to-cell communication as an important component of the operation of taste buds with individual taste receptor cells (TRCs) communicating with one another by means of a number of neurotransmitters and neuropeptides, although functional roles are not yet understood. Here, we characterize the presence, distribution pattern, phenotype, and functional consequences of a previously undescribed inhibitory route within the taste bud mediated by the classic neurotransmitter GABA and its receptors. By using immunocytochemistry, subsets of TRCs within rat taste buds were identified as expressing GABA, and its synthetic enzyme glutamate decarboxylase (GAD). GAD expression was verified with Western blotting. Immunofluorescent studies revealed complex coexpression patterns of GAD with the TRC protein markers gustducin, neural cell adhesion molecule, protein gene product 9.5, and synaptosomal-associated protein of 25 kDa that collectively outline hardwired signaling pathways of GABAergic TRCs. RT-PCR and immunocytochemistry demonstrated that both GABA(A) and GABA(B) receptors are expressed in the taste bud. The later was observed in a subset TRCs paracrine to GAD-expressing TRCs. Physiological effects of GABA were examined by patch clamp recordings. GABA and the GABA(A) agonists muscimol and isoguvacine enhanced isolated chloride currents in a dose-dependent manner. Also, GABA and the GABA(B) agonist baclofen both elicited increases of the inwardly rectifying potassium currents that could be blocked by the GABA(B) receptor antagonist CGP 35348 and the G protein blocker GDP-betaS. Collectively, these data suggest that GABAergic TRCs are able to shape the final chemosensory output of the bud by means of processes of cell-to-cell modulation.


Assuntos
Comunicação Celular , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Comunicação Celular/efeitos dos fármacos , Canais de Cloreto/metabolismo , Agonistas de Receptores de GABA-A , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato Descarboxilase/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Muscimol/farmacologia , Canais de Potássio/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Papilas Gustativas/efeitos dos fármacos , Papilas Gustativas/enzimologia
19.
Org Lett ; 24(31): 5791-5796, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35916599

RESUMO

A novel visible-light-mediated difluoroalkylation of 1-(allyloxy)-2-(1-arylvinyl)benzenes and 1-(1-arylvinyl)-2-(vinyloxy)benzenes for the synthesis of bis-difluoroalkylated benzoxepines and 2H-chromenes is developed. This method features mild reaction conditions, good regioselectivity, a wide substrate scope, good functional-group compatibility, and late-stage modification. Preliminary mechanistic studies reveal that the generation of the CF2CO2Et radical is more prone to reaction with the double bond of the aryl group.

20.
Exp Neurol ; 353: 114058, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35358498

RESUMO

Traumatic brain injury (TBI) impairs the ability to restore homeostasis in response to stress, indicating hypothalamic-pituitary-adrenal (HPA)-axis dysfunction. Many stressors result in sleep disturbances, thus mechanical sleep fragmentation (SF) provides a physiologically relevant approach to study the effects of stress after injury. We hypothesize SF stress engages the dysregulated HPA-axis after TBI to exacerbate post-injury neuroinflammation and compromise recovery. To test this, male and female mice were given moderate lateral fluid percussion TBI or sham-injury and left undisturbed or exposed to daily, transient SF for 7- or 30-days post-injury (DPI). Post-TBI SF increases cortical expression of interferon- and stress-associated genes characterized by inhibition of the upstream regulator NR3C1 that encodes glucocorticoid receptor (GR). Moreover, post-TBI SF increases neuronal activity in the hippocampus, a key intersection of the stress-immune axes. By 30 DPI, TBI SF enhances cortical microgliosis and increases expression of pro-inflammatory glial signaling genes characterized by persistent inhibition of the NR3C1 upstream regulator. Within the hippocampus, post-TBI SF exaggerates microgliosis and decreases CA1 neuronal activity. Downstream of the hippocampus, post-injury SF suppresses neuronal activity in the hypothalamic paraventricular nucleus indicating decreased HPA-axis reactivity. Direct application of GR agonist, dexamethasone, to the CA1 at 30 DPI increases GR activity in TBI animals, but not sham animals, indicating differential GR-mediated hippocampal action. Electrophysiological assessment revealed TBI and SF induces deficits in Schaffer collateral long-term potentiation associated with impaired acquisition of trace fear conditioning, reflecting dorsal hippocampal-dependent cognitive deficits. Together these data demonstrate that post-injury SF engages the dysfunctional post-injury HPA-axis, enhances inflammation, and compromises hippocampal function. Therefore, external stressors that disrupt sleep have an integral role in mediating outcome after brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Privação do Sono , Animais , Lesões Encefálicas Traumáticas/metabolismo , Feminino , Hipocampo/metabolismo , Inflamação/metabolismo , Potenciação de Longa Duração , Masculino , Camundongos , Privação do Sono/complicações , Privação do Sono/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA