Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38792165

RESUMO

The objective of this study was to identify multiple alkaloids in Coptis chinensis that demonstrate inhibitory activity against DPP-4 and systematically evaluate their activity and binding characteristics. A combined strategy that included molecular docking, a DPP-4 inhibition assay, surface plasmon resonance (SPR), and a molecular dynamics simulation technique was employed. The results showed that nine alkaloids in Coptis chinensis directly inhibited DPP-4, with IC50 values of 3.44-53.73 µM. SPR-based binding studies revealed that these alkaloids display rapid binding and dissociation characteristics when interacting with DPP-4, with KD values ranging from 8.11 to 29.97 µM. A molecular dynamics analysis revealed that equilibrium was rapidly reached by nine DPP-4-ligand systems with minimal fluctuations, while binding free energy calculations showed that the ∆Gbind values for the nine test compounds ranged from -31.84 to -16.06 kcal/mol. The most important forces for the binding of these alkaloids with DPP-4 are electrostatic interactions and van der Waals forces. Various important amino acid residues, such as Arg125, His126, Phe357, Arg358, and Tyr547, were involved in the inhibition of DPP-4 by the compounds, revealing a mechanistic basis for the further optimization of these alkaloids as DPP-4 inhibitors. This study confirmed nine alkaloids as direct inhibitors of DPP-4 and characterized their binding features, thereby providing a basis for further research and development on novel DPP-4 inhibitors.


Assuntos
Alcaloides , Coptis , Dipeptidil Peptidase 4 , Inibidores da Dipeptidil Peptidase IV , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Coptis/química , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Alcaloides/química , Alcaloides/farmacologia , Ligação Proteica , Humanos , Sítios de Ligação , Ressonância de Plasmônio de Superfície , Descoberta de Drogas/métodos
2.
Physiol Plant ; 175(5): e14010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882262

RESUMO

Fruits and leaves of Solanum khasianum C. B. Clarke have long been used as a common Chinese herbal medicine. Steroidal glycoalkaloids (SGAs), the main active ingredient in S. khasianum, exhibit various pharmacological effects. However, genes involved in the SGA biosynthetic pathway in S. khasianum have not yet been identified. Genes encoding potential key SGA biosynthesis enzymes were identified through comprehensive RNA sequencing analysis (RNA-seq) of S. khasianum leaves, stems, and fruits. A total of 123,704 unigenes were obtained, of which 109,775 (88.74%) were annotated in seven public databases. Among these, 54 unigenes potentially involved in SGA biosynthesis were identified. Additionally, 23,636 differentially expressed genes were identified by comparing gene expression levels among the fruits, stems, and leaves of S. khasianum. The structural characteristics and phylogenetic relationship of cycloartenol synthase involved in SGA biosynthesis were further analyzed. Solasodine constituent was detected by high-performance liquid chromatography. This is the first study to report the comparative transcriptome analysis of different tissues of S. khasianum that identifies valuable genes potentially involved in SGA biosynthesis in this species.


Assuntos
Solanum , Solanum/genética , Filogenia , Perfilação da Expressão Gênica , Transcriptoma/genética , RNA-Seq
3.
Physiol Mol Biol Plants ; 28(2): 333-346, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35400889

RESUMO

Anthriscus sylvestris L. Hoffm. Gen (A. sylvestris) is a perennial herb widely used for antitussive and diuretic purposes in traditional Korean and Chinese medicine. Lignans are critical secondary metabolites with widely pharmacological activities in A. sylvestris. Using transcriptome data of A. sylvestris, we identified genes related to lignan biosynthesis. In all, 123,852 unigenes were obtained from the flowers, leaves, roots, and stems of A. sylvestris with the Illumina HiSeq 4000 platform. The average length of unigenes was 1,123 bp and 91,217 (73.65%) of them were annotated in public databases. Differentially expressed genes and root-specific genes were analyzed between roots and the other three tissue types by comparing gene expression profiles. Specifically, the key enzyme genes involved in lignan biosynthesis were identified and analyzed. The expression levels of some of these genes were highest in the roots, consistent with the accumulation of deoxypodophyllotoxin. These expression levels were experimentally verified via quantitative real-time polymerase chain reaction (qRT-PCR). This research provides valuable information on the transcriptome data of A. sylvestris and the identification of candidate genes associated with the biosynthesis of lignans, laying the foundation for further research on genomics in A. sylvestris and related species. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01156-w.

4.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3765-3772, 2022 Jul.
Artigo em Zh | MEDLINE | ID: mdl-35850833

RESUMO

Lignan is the main medicinal component of Eucommia ulmoides, and lignin is involved in the defense of plants against diseases and insect pests.They are synthesized from coniferyl alcohol with the help of dirigent(DIR) and peroxidase(POD), respectively.In this study, transcriptome assembly of stems and leaves of E.ulmoides was performed, yielding 112 578 unigenes.Among them, 70 459 were annotated in seven databases.A total of 59 unigenes encodes 11 key enzymes in the biosynthesis pathways of lignin and lignin, of which 11 encode POD and 8 encode DIR.A total of 13 unigenes encoding transcription factors are involved in phenylpropanoid metabolism. Compared with leaves of E.ulmoides, 7 575 unigenes were more highly expressed in stems, of which 462 were involved in phenylpropanoid biosynthesis.Our results extend the public transcriptome dataset of E.ulmoides, which provide valuable information for the analysis of biosynthesis pathways of lignan and lignin in E.ulmoides and lay a foundation for further study on the functions and regulation mechanism of key enzymes in lignan and lignin biosynthesis pathways.


Assuntos
Eucommiaceae , Lignanas , Vias Biossintéticas , Eucommiaceae/genética , Lignanas/metabolismo , Lignina/metabolismo , Transcriptoma
5.
Ecotoxicol Environ Saf ; 224: 112671, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34416642

RESUMO

Coastal eutrophication is an indisputable reality and becoming a worldwide concern. However, whether and how eutrophication affects metal bioaccumulation in marine bivalves have not yet been elucidated. Here, we present the potential influence of coastal eutrophication on metal bioaccumulation in the Manila clam Ruditapes philippinarum. The degree of coastal eutrophication was examined monthly over a 1-year period at three sampling sites. The bioconcentration factor (BCF), biosediment accumulation factor (BSAF) and metal pollution index (MPI) were applied to evaluate the efficiency of metal bioaccumulation in R. philippinarum. BCF and BSAF indicated that eutrophication did not significantly affect the bioaccumulation of Cr, Cu, Zn, Cd, Pb, Hg, and As in R. philippinarum. However, up to 56% of MPI variation can be related to the level of eutrophication. Therefore, further research should address the synergistic effects of eutrophication and metal pollution on coastal ecosystems.

6.
Mol Cell Biochem ; 475(1-2): 277-283, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32812103

RESUMO

Coumarin-pi, a new coumarin derivative isolated from the mushroom Paxillus involutus, has antioxidative activity, but the underlying mechanism against intracellular oxidative stress is still unclear. This study investigated its cytoprotective effects and the antioxidative mechanism in tert-butyl hydroperoxide (t-BHP)-induced HepG2 cells. The results demonstrated that coumarin-pi suppressed t-BHP-stimulated cytotoxicity, cell apoptosis, and generation of reactive oxygen species (ROS). Additionally, coumarin-pi promoted nuclear factor erythroid 2-related factor 2 (Nrf2) expression and upregulated the protein expression of antioxidantenzymes, including heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidase (NQO1), glutamyl cysteine ligase catalytic subunit (GCLC), and glutamate-cysteine ligase regulatory subunit (GCLM). After coumarin-pi treatment, transcriptome sequencing and bioinformatic analysis revealed that 256 genes were differentially expressed; interestingly, only 20 genes were downregulated, and the rest of the genes were upregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation were used to identify changes in metabolic pathways. Collectively, the results presented in this study indicate that coumarin-pi has a protective effect against t-BHP-induced cellular damage and oxidative stress.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Cumarínicos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , terc-Butil Hidroperóxido/toxicidade , Antioxidantes/metabolismo , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Células Hep G2 , Humanos , Espécies Reativas de Oxigênio/metabolismo
7.
Zhongguo Zhong Yao Za Zhi ; 45(12): 2847-2857, 2020 Jun.
Artigo em Zh | MEDLINE | ID: mdl-32627459

RESUMO

Steroidal saponins, which are the characteristic and main active constituents of Polygonatum, exhibit a broad range of pharmacological functions, such as regulating blood sugar, preventing cardiovascular and cerebrovascular diseases and anti-tumor. In this study, we performed RNA sequencing(RNA-Seq) analysis for the flowers, leaves, roots, and rhizomes of Polygonatum cyrtonema using the BGISEQ-500 platform to understand the biosynthesis pathway of steroidal saponins and study their key enzyme genes. The assembly of transcripts for four tissues generated 129 989 unigenes, of which 88 958 were mapped to several public databases for functional annotation, 22 813 unigenes were assigned to 53 subcategories and 64 877 unigenes were annotated to 136 pathways in KEGG database. Furthermore, 502 unigenes involved in the biosynthesis pathway of steroidal saponins were identified, of which 97 unigenes encoding 12 key enzymes. Cycloartenol synthase, the first key enzyme in the pathway of phytosterol biosynthesis, showed conserved catalytic domain and substrate binding domain based on sequence analysis and homology modeling. Differentially expressed genes(DEGs) were identified in rhizomes as compared to other tissues(flowers, leaves or roots).The 2 437 unigenes annotated by KEGG showed rhizome-specific expression, of which 35 unigenes involved in the biosynthesis of steroidal saponins. Our results greatly extend the public transcriptome dataset of Polygonatum and provide valuable information for the identification of candidate genes involved in the biosynthesis of steroidal saponins and other important secondary metabolites.


Assuntos
Polygonatum , Saponinas , Vias Biossintéticas , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Transcriptoma
8.
Appl Microbiol Biotechnol ; 101(23-24): 8419-8430, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29075828

RESUMO

Hydrophobins are a series of low molecular weight proteins produced by filamentous fungi that play an important role in fungal growth. They have a globular structure and possess a unique hydrophobic patch on their surface that makes them amphiphilic, making them among the most surface-active proteins. Herein, the surface charge properties of HGFI, a class I hydrophobin from Grifola frondosa, were altered by replacing the negatively charged Glu24 with a positively charged Lys to generate the ME24 mutant. Pichia pastoris GS115 was used for recombinant expression of the ME24 mutant, which was purified by a two-step procedure. The function of the mutated residue in HGFI self-assembly was investigated. Reverse-phase high-performance liquid chromatography analysis revealed that the polarity of ME24 was enhanced compared with HGFI. Circular dichroism, thioflavin T assay, water contact angle and atomic force microscopy indicated that Glu24 participates in rodlet formation. Water solubility detection and dynamic light scattering showed that Glu24 affects the assembled state of HGFI in aqueous solution. The behaviour of the mutant in an emulsion, in the dispersion of insoluble materials and in large-scaled protein production suggests the functions of hydrophobins can be tuned for new applications.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Grifola/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Multimerização Proteica , Tensoativos/metabolismo , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Difusão Dinâmica da Luz , Proteínas Fúngicas/química , Expressão Gênica , Grifola/genética , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Mutação de Sentido Incorreto , Pichia/genética , Pichia/metabolismo , Mutação Puntual , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade , Tensoativos/química
9.
Protein Expr Purif ; 128: 22-8, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27474238

RESUMO

Hydrophobins are proteins produced by filamentous fungi with high natural-surfactant activities and that can self-assemble in interfaces of air-water or solid-water to form amphiphilic membranes. Here, we reported a high-yield fermentation method for hydrophobin HGFI from Grifola frondosa in Pichia pastoris, attaining production of 300 mg/L by keeping the dissolved oxygen level at 15%-25% by turning the methanol-feeding speed. We also developed a novel HGFI-purification method enabling large-scare purification of HGFI, with >90% recovery. Additionally, we observed that hydrophobin HGFI in fermentation broth precipitated at pH < 7.0 and temperatures >90 °C. We also identified the structure and properties of proteins purified by this method through atomic force microscopy, circular dichroism, X-ray photoelectron spectroscopy, and water-contact angle measurement, which is similar to protein purification by ultrafiltration without heating treatment that enables our method to maintain native HGFI structure and properties. Furthermore, the purification method presented here can be applied to large-scale purification of other type I hydrophobins.


Assuntos
Proteínas Fúngicas , Expressão Gênica , Grifola/genética , Pichia/crescimento & desenvolvimento , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Grifola/metabolismo , Pichia/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
10.
Artigo em Inglês | MEDLINE | ID: mdl-26921639

RESUMO

Ocean acidification is predicted to have widespread implications for marine bivalve mollusks. While our understanding of its impact on their physiological and behavioral responses is increasing, little is known about their reproductive responses under future scenarios of anthropogenic climate change. In this study, we examined the physiological energetics of the Manila clam Ruditapes philippinarum exposed to CO2-induced seawater acidification during gonadal maturation. Three recirculating systems filled with 600 L of seawater were manipulated to three pH levels (8.0, 7.7, and 7.4) corresponding to control and projected pH levels for 2100 and 2300. In each system, temperature was gradually increased ca. 0.3°C per day from 10 to 20°C for 30days and maintained at 20°C for the following 40days. Irrespective of seawater pH levels, clearance rate (CR), respiration rate (RR), ammonia excretion rate (ER), and scope for growth (SFG) increased after a 30-day stepwise warming protocol. When seawater pH was reduced, CR, ratio of oxygen to nitrogen, and SFG significantly decreased concurrently, whereas ammonia ER increased. RR was virtually unaffected under acidified conditions. Neither temperature nor acidification showed a significant effect on food absorption efficiency. Our findings indicate that energy is allocated away from reproduction under reduced seawater pH, potentially resulting in an impaired or suppressed reproductive function. This interpretation is based on the fact that spawning was induced in only 56% of the clams grown at pH 7.4. Seawater acidification can therefore potentially impair the physiological energetics and spawning capacity of R. philippinarum.


Assuntos
Bivalves/fisiologia , Reprodução/fisiologia , Água do Mar/química , Amônia/metabolismo , Animais , Bivalves/crescimento & desenvolvimento , Metabolismo Energético , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Oxigênio/análise , Temperatura
11.
Mar Environ Res ; 198: 106561, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788476

RESUMO

Ocean acidity extremes (OAX) events are becoming more frequent and intense in coastal areas in the context of climate change, generating widespread consequences on marine calcifying organisms and ecosystems they support. While transgenerational exposure to end-of-century scenario of ocean acidification (i.e., at pH 7.7) can confer calcifiers resilience, whether and to what extent such resilience holds true under OAX conditions is still poorly understood. Here, we found that transgenerational exposure of Ruditapes philippinarum to OAX resulted in cessation of embryonic development at the trochophore stage, implying devastating consequences of OAX on marine bivalves. We identified a large number of differentially expressed genes in embryos following transgenerationally exposed to OAX, which were mainly significantly enriched in KEGG pathways related to energy metabolism, immunity and apoptosis. These pathways were significantly activated, and genes involved in these processes were up-regulated, indicating strong cellular stress responses to OAX. These findings demonstrate that transgenerational exposure to OAX can result in embryonic developmental cessation by severe cellular damages, implying that transgenerational acclimation maybe not a panacea for marine bivalves to cope with OAX, and hence urgent efforts are required to understand consequences of intensifying OAX events in coastal ecosystems.


Assuntos
Bivalves , Mudança Climática , Desenvolvimento Embrionário , Água do Mar , Transcriptoma , Animais , Água do Mar/química , Transcriptoma/efeitos dos fármacos , Bivalves/genética , Bivalves/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Oceanos e Mares
12.
Sci Total Environ ; 946: 174471, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964384

RESUMO

Rising ocean temperatures, a consequence of anthropogenic climate change, are increasing the frequency, intensity, and magnitude of extreme marine heatwaves (MHWs). These persistent anomalous warming events can have severe ecological and socioeconomic impacts, threatening ecologically and economically vital organisms such as bivalves and the ecosystems they support. Developing robust environmental and social frameworks to enhance the resilience and adaptability of bivalve aquaculture is critical to ensuring the sustainability of this crucial food source. This review synthesizes the current understanding of the physiological and ecological impacts of MHWs on commercially important bivalve species farmed globally. We propose an integrated risk assessment framework that encompasses environmental monitoring, farm-level preparedness planning, and community-level social support systems to safeguard bivalve aquaculture. Specifically, we examine heatwave prediction models, local mitigation strategies, and social programs that could mitigate the impacts on bivalve farms and vulnerable coastal communities economically dependent on this fishery. At the farm level, adaptation strategies such as selective breeding for heat-tolerant strains, optimized site selection, and adjustments to culture practices can improve survival outcomes during MHWs. Robust disease surveillance and management programs are essential for early detection and rapid response. Furthermore, we highlight the importance of stakeholder engagement, knowledge exchange, and collaborative governance in developing context-specific, inclusive, and equitable safeguard systems. Proactive measures, such as advanced forecasting tools like the California Current Marine Heat Wave Tracker developed by NOAA's Southwest Fisheries Science Center, enable preemptive action before losses occur. Coordinated preparation and response, underpinned by continuous monitoring and adaptive management, promise to protect these climate-vulnerable food systems and coastal communities. However, sustained research, innovation, and cross-sector collaboration are imperative to navigate the challenges posed by our rapidly changing oceans.

13.
Mar Pollut Bull ; 200: 116112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320442

RESUMO

Rapidly increasing concentration of carbon dioxide (CO2) in the atmosphere not only results in global warming, but also drives increasing seawater acidification. Infaunal bivalves play critical roles in benthic-pelagic coupling, but little is known about their behavioral responses to compound climate events. Here, we tested how heatwaves and acidification affected the behavior of Manila clams (Ruditapes philippinarum). Under acidified conditions, the clams remained capable of burrowing into sediments. Yet, when heatwaves attacked, significant decreases in burrowing ability occurred. Following two consecutive events of heatwaves, the clams exhibited rapid behavioral acclimation. The present study showed that the behavior of R. philippinarum is more sensitive to heatwaves than acidification. Given that the behavior can act as an early and sensitive indicator of the fitness of intertidal bivalves, whether, and to what extent, behavioral acclimation can persist under scenarios of intensifying heatwaves in the context of ocean acidification deserve further investigations.


Assuntos
Bivalves , Clima Extremo , Animais , Água do Mar , Concentração de Íons de Hidrogênio , Bivalves/fisiologia , Clima
14.
Mar Pollut Bull ; 204: 116523, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815474

RESUMO

Ocean acidification and heatwaves caused by rising CO2 affect bivalves and other coastal organisms. Intertidal bivalves are vital to benthic ecosystems, but their physiological and metabolic responses to compound catastrophic climate events are unknown. Here, we examined Manila clam (Ruditapes philippinarum) responses to low pH and heatwaves. Biochemical and gene expression demonstrated that pH and heatwaves greatly affect physiological energy enzymes and genes expression. In the presence of heatwaves, Manila clams expressed more enzymes and genes involved in physiological energetics regardless of acidity, even more so than in the presence of both. In this study, calcifying organisms' biochemical and molecular reactions are more susceptible to temperature rises than acidity. Acclimation under harsh weather conditions was consistent with thermal stress increase at lower biological organization levels. These substantial temporal biochemical and molecular patterns illuminate clam tipping points. This study helps us understand how compound extreme weather and climate events affect coastal bivalves for future conservation efforts.


Assuntos
Bivalves , Água do Mar , Animais , Bivalves/fisiologia , Água do Mar/química , Concentração de Íons de Hidrogênio , Mudança Climática , Oceanos e Mares , Ecossistema , Clima Extremo
15.
Mol Med Rep ; 29(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38099337

RESUMO

The role of long intergenic noncoding RNA 00893 (Linc00893) in asthenozoospermia (AS) and its impact on sperm motility remains unclear The present study explored the effect of Linc00893 on AS, specifically its effect on sperm motility and its relationship with spermatogonial stem cell (SSC) vitality and myosin heavy chain 9 (MYH9) protein expression. Linc00893 expression was analyzed in semen samples using reverse transcription­quantitative PCR, revealing a significant downregulation in samples from individuals with AS compared with those from healthy subjects. This downregulation was found to be negatively correlated with parameters of sperm motility. To further understand the role of Linc00893, small interfering RNA was used to knockdown its expression in SSCs. This knockdown led to a marked decrease in cell vitality and an increase in apoptosis. Notably, Linc00893 knockdown was shown to inhibit MYH9 expression by competitively binding with microRNA­107, a finding verified by dual­luciferase reporter and RNA immunoprecipitation assays. Furthermore, using the GSE160749 dataset from the Gene Expression Omnibus database, it was revealed that MYH9 protein expression was downregulated in AS samples. Subsequently, lentiviral vectors were constructed to induce overexpression of MYH9, which in turn reduced SSC apoptosis and counteracted the apoptosis triggered by Linc00893 knockdown. In conclusion, the present study identified the role of Linc00893 in AS, particularly its regulatory impact on sperm motility, SSC vitality and MYH9 expression. These findings may provide information on the potential regulatory mechanisms in AS development, and identify Linc00893 and MYH9 as possible targets for diagnosing and treating AS­related disorders.


Assuntos
Astenozoospermia , MicroRNAs , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA/metabolismo , Análise do Sêmen , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo , RNA não Traduzido/genética
16.
Sci Total Environ ; 914: 169803, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181949

RESUMO

The wild yak (Bos mutus) is a cold-tolerant herbivore native to the Tibetan Plateau and has been categorized as vulnerable by the International Union for Conservation of Nature and Natural Resources. Low population densities within currently fragmented habitats and unclear landscape conservation priorities warrant attention. Herein, we employed the maximum entropy (MaxEnt) model using over 900 wild yak occurrence records to model wild yak habitat suitability. Our analysis revealed unprotected wild yak landscapes covering 30.79 % of the habitat area, indicating a conservation gap between protected areas (PAs) and wild yak habitats. To protect metapopulation dynamics and mitigate high risks of poaching, habitat degradation and fragmentation, resource competition, and degenerated genetic characterization of wild yaks in fragmented and degraded habitat, we identified eight habitat patches as landscape conservation units (LCUs) and 14 linkages among the LCUs, enhancing the connectivity between LCUs to decrease negative effects of genetic threats. A centrality analysis demonstrated that Changtang, Arjinshan, and Hoh Xil national nature reserves and their linkages are all critical for the maintenance of habitat connectivity. Here, we suggest that habitat- and LCU-specific conservation strategies should be highlighted during the establishment of PAs and transboundary cooperation. Ultimately, our results can assist conservationists and land managers in comprehending wild yak distribution, movement, and habitat requirements, as well as for the development of effective protection strategies. Furthermore, the combined modeling method (MaxEnt-Zonation-InVEST) could be utilized as a component for identifying conservation priorities and linkages between core patches for species and assessing the efficiency of PAs, core habitats, and corridors in achieving conservation goals. Our study can provide a framework in identifying priority conservation and connectivity between habitat patches to facilitate effectively conservation and genetic resilience for endangered species in fragmented habitats.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Bovinos , Tibet , China , Espécies em Perigo de Extinção
17.
Sci Total Environ ; 928: 172474, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621527

RESUMO

Marine heatwaves (MHWs) have a significant impact on intertidal bivalves and the ecosystems they sustain, causing the destruction of organisms' original habitats. Saccostrea mordax mainly inhabits the intertidal zone around the equator, exhibiting potential tolerance to high temperatures and maybe a species suitable for habitat restoration. However, an understanding about the tolerance mechanism of S. mordax to high temperatures is unclear. It is also unknown the extent to which S. mordax can tolerate repeated heatwaves of increasing intensity and frequency. Here, we simulated the effects of two scenarios of MHWs and measured the physiological and biochemical responses and gene expression spectrum of S. mordax. The predicted responses varied greatly across heatwaves, and no heatwave had a significant impact on the survival of S. mordax. Specifically, there were no statistically significant changes apparent in the standard metabolic rate and the activities of enzymes of the oyster during repeated heatwaves. S. mordax exposed to high-intensity heatwaves enhanced their standard metabolic rate to fuel essential physiological maintenance and increasing activity of SOD and expression of HSP70/90. These strategies are presumably at the expense of functions related to immunity and growth, as best exemplified by significant depressions in activities of enzymes (NaK, CaMg, T-ATP, and AKP) and expression levels of genes (Rab, eEF-2, HMGR, Rac1, SGK, Rab8, etc.). The performance status of S. mordax tends to improve by implementing a suite of less energy-costly compensatory mechanisms at various levels of biological organization when re-exposed to heatwaves. The adaptive abilities shown by S. mordax indicate that they can play a crucial role in the restoration of oyster reefs in tropical seas.


Assuntos
Ostreidae , Animais , Ostreidae/fisiologia , Recifes de Corais , Calor Extremo , Ecossistema , Temperatura Alta , Termotolerância
18.
Front Endocrinol (Lausanne) ; 15: 1373774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863929

RESUMO

Background: Asthenozoospermia, a type of male infertility, is primarily caused by dysfunctional sperm mitochondria. Despite previous bioinformatics analysis identifying potential key lncRNAs, miRNAs, hub genes, and pathways associated with asthenospermia, there is still a need to explore additional molecular mechanisms and potential biomarkers for this condition. Methods: We integrated data from Gene Expression Omnibus (GEO) (GSE22331, GSE34514, and GSE160749) and performed bioinformatics analysis to identify differentially expressed genes (DEGs) between normozoospermia and asthenozoospermia. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to gain insights into biological processes and signaling pathways. Weighted Gene Co-expression Network Analysis (WGCNA) identified gene modules associated with asthenozoospermia. Expression levels of key genes were assessed using datasets and experimental data. Gene Set Enrichment Analysis (GSEA) and correlation analysis identified pathways associated with the hub gene and explore the relationship between the ZNF764 and COQ9 and mitochondrial autophagy-related genes. Competitive endogenous RNA (ceRNA) networks were constructed, and in vitro experiments using exosome samples were conducted to validate this finding. Results: COQ9 was identified as a marker gene in asthenozoospermia, involved in autophagy, ATP-dependent chromatin remodeling, endocytosis, and cell cycle, etc. The ceRNA regulatory network (LINC00893/miR-125a-5p/COQ9) was constructed, and PCR demonstrated that LINC00893 and COQ9 were downregulated in asthenozoospermia, while miR-125a-5p and m6A methylation level of LINC00893 were upregulated in asthenozoospermia compared to normozoospermic individuals. Conclusion: The ceRNA regulatory network (LINC00893/miR-125a-5p/COQ9) likely plays a crucial role in the mechanism of asthenozoospermia. However, further functional experiments are needed to fully understand its significance.


Assuntos
Astenozoospermia , Biomarcadores , Biologia Computacional , Redes Reguladoras de Genes , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/metabolismo , Biologia Computacional/métodos , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Ontologia Genética , Transdução de Sinais/genética , Espermatozoides/metabolismo
19.
Animals (Basel) ; 14(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38338140

RESUMO

The innate immunity of marine bivalves is challenged upon exposure to heat stress, especially with increases in the frequency and intensity of heat waves. TLR4 serves a classical pattern recognition receptor in recognizing pathogenic microorganisms and activating immune responses. In this study, three genes, HMTLR4, HMMyD88 and HMTRAF6, were characterized as homologs of genes in the TLR4-MyD88 signaling pathway in the selected scallop strain "Hongmo No. 1". According to RT-PCR, acute heat stress (32 °C) inhibited genes in the TLR4-MyD88 signaling pathway, and LPS stimulation-induced activation of TLR4-MyD88 signal transduction was also negatively affected at 32 °C. ELISA showed LPS-induced tumor necrosis factor alpha (TNF-α) or lysozyme (LZM) activity, but this was independent of temperature. RNA interference (RNAi) confirmed that HMTLR4 silencing suppressed the expression of its downstream gene, whether at 24 °C or at 32 °C. The level of TNF-α and the activity of LZM also decreased after injection with dsRNA, indicating a negative effect on the innate immunity of scallops. Additionally, acute heat stress affected the suppression of downstream gene expression when compared with that at 24 °C, which led us to the hypothesis that heat stress directly influences the downstream targets of HMTLR4. These results enrich the knowledge of scallop immunity under heat stress and can be beneficial for the genetic improvement of new scallop strains with higher thermotolerance.

20.
Int J Biol Macromol ; 261(Pt 1): 129674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280710

RESUMO

The pro-tumorigenic M2-type tumor-associated macrophages (TAMs) in the immunosuppressive tumor microenvironment (TME) promote the progression, angiogenesis, and metastasis of breast cancer. The repolarization of TAMs from an M2-type toward an M1-type holds great potential for the inhibition of breast cancer. Here, we report that Lycium barbarum polysaccharides (LBPs) can significantly reconstruct the TME by modulating the function of TAMs. Specifically, we separated four distinct molecular weight segments of LBPs and compared their repolarization effects on TAMs in TME. The results showed that LBP segments within 50-100 kDa molecular weight range exhibited the prime effect on the macrophage repolarization, augmented phagocytosis effect of the repolarized macrophages on breast cancer cells, and regression of breast tumor in a tumor-bearing mouse model. In addition, RNA-sequencing confirms that this segment of LBP displays an enhanced anti-breast cancer effect through innate immune responses. This study highlights the therapeutic potential of LBP segments within the 50-100 kDa molecular weight range for macrophage repolarization, paving ways to offer new strategies for the treatment of breast cancer.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Neoplasias , Camundongos , Animais , Macrófagos Associados a Tumor , Peso Molecular , Medicamentos de Ervas Chinesas/farmacologia , Macrófagos , Microambiente Tumoral , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA