Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nano Lett ; 24(20): 6061-6068, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728017

RESUMO

van der Waals (vdW) superlattices, comprising different 2D materials aligned alternately by weak interlayer interactions, offer versatile structures for the fabrication of novel semiconductor devices. Despite their potential, the precise control of optoelectronic properties with interlayer interactions remains challenging. Here, we investigate the discrepancies between the SnS/TiS2 superlattice (SnTiS3) and its subsystems by comprehensive characterization and DFT calculations. The disappearance of certain Raman modes suggests that the interactions alter the SnS subsystem structure. Specifically, such structural changes transform the band structure from indirect to direct band gap, causing a strong PL emission (∼2.18 eV) in SnTiS3. In addition, the modulation of the optoelectronic properties ultimately leads to the unique phenomenon of thermally activated photoluminescence. This phenomenon is attributed to the inhibition of charge transfer induced by tunable intralayer strains. Our findings extend the understanding of the mechanism of interlayer interactions in van der Waals superlattices and provide insights into the design of high-temperature optoelectronic devices.

2.
J Cell Mol Med ; 28(3): e18086, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38152044

RESUMO

Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are the second most common cancers in women aged 20-39. While HPV screening can help with early detection of cervical cancer, many patients are already in the medium to late stages when they are identified. As a result, searching for novel biomarkers to predict CESC prognosis and propose molecular treatment targets is critical. TGFA is a polypeptide growth factor with a high affinity for the epidermal growth factor receptor. Several studies have shown that TGFA can improve cancer growth and progression, but data on its impact on the occurrence and advancement of CESC is limited. In this study, we used clinical data analysis and bioinformatics techniques to explore the relationship between TGFA and CESC. The results showed that TGFA was highly expressed in cervical cancer tissues and cells. TGFA knockdown can inhibit the proliferation, migration and invasion of cervical cancer cells. In addition, after TGFA knockout, the expression of IL family and MMP family proteins in CESC cell lines was significantly reduced. In conclusion, TGFA plays an important role in the occurrence and development of cervical cancer. Therefore, TGFA may become a new target for cervical cancer treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Humanos , Feminino , Linhagem Celular , Biologia Computacional , Pescoço , Fator de Crescimento Transformador alfa
3.
Small ; 20(16): e2306226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38037680

RESUMO

It has been well-established that light-matter interactions, as manifested by diverse linear and nonlinear optical (NLO) processes, are mediated by real and virtual particles, such as electrons, phonons, and excitons. Polarons, often regarded as electrons dressed by phonons, are known to contribute to exotic behaviors of solids, from superconductivity to photocatalysis, while their role in materials' NLO response remains largely unexplored. Here, the NLO response mediated by polarons supported by a model ionic metal oxide, TiO2, is examined. It is observed that the formation of polaronic states within the bandgap results in a dramatic enhancement of NLO absorption coefficient by over 130 times for photon energies in the sub-bandgap regions, characterized by a 100 fs scale ultrafast response that is typical for thermalized electrons in metals. The ultrafast polaronic NLO response is then exploited for the development of all-optical switches for ultrafast pulse generation in near-infrared (NIR) fiber lasers and modulation of optical signal in the telecommunication band based on evanescent interaction on a planar waveguide chip. These results suggest that the polarons supported by dielectric ionic oxides can fill the gaps left by dielectric and metallic materials and serve as a novel platform for nonlinear photonic applications.

4.
Small ; 20(24): e2309595, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38152956

RESUMO

Low-dimensional bismuth oxychalcogenides have shown promising potential in optoelectronics due to their high stability, photoresponse, and carrier mobility. However, the relevant studies on deep understanding for Bi2O2S is quite limited. Here, comprehensive experimental and computational investigations are conducted in the regulated band structure, nonlinear optical (NLO) characteristics, and carrier dynamics of Bi2O2S nanosheets via defect engineering, taking O vacancy (OV) and substitutional Se doping as examples. As the OV continuously increased to ≈35%, the optical bandgaps progressively narrow from ≈1.21 to ≈0.81 eV and NLO wavelengths are extended to near-infrared regions with enhanced saturable absorption. Simultaneously, the relaxation processes are effectively accelerated from tens of picoseconds to several picoseconds, as the generated defect energy levels can serve as both additional absorption cross-sections and fast relaxation channels supported by theoretical calculations. Furthermore, substitutional Se doping in Bi2O2S nanosheets also modulate their optical properties with the similar trends. As a proof-of-concept, passively mode-locked pulsed lasers in the ≈1.0 µm based on the defect-rich samples (≈35% OV and ≈50% Se-doping) exhibit excellent performance. This work deepens the insight of defect functions on optical properties of Bi2O2S nanosheets and provides new avenues for designing advanced photonic devices based on low-dimensional bismuth oxychalcogenides.

5.
Ecotoxicol Environ Saf ; 286: 117166, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39405968

RESUMO

Microplastics (MPs) pollution is emerging as a significant environmental concern, threatening human and animal health. Liver, as an important organ, plays an important role in the metabolism and detoxification of pollutants. Many studies have suggested that the liver is a potential target organ for MPs. However, the extent and consequences of the impacts of MPs on the liver reported in studies remain inconsistent. We categorized vertebrates into fish, mammals, and birds and performed a meta-analysis to comprehensively examine the effects of MPs on the liver. Hedges' g values were calculated to evaluate effect sizes. To further explore the sources of heterogeneity among the studies, we conducted subgroup analyses focusing on life stage, MPs type, MPs size, and exposure duration. Additionally, we normalized the MPs concentrations and conducted meta-regression analyses to explore the relationship between MPs concentrations and their hepatotoxic effects. A total of 118 studies were included in this meta-analysis. By quantifying 19 indicators, the results showed that MPs could damage the liver by altering liver morphology, inducing oxidative stress, producing intracellular toxicity, altering biotransformation processes, and disturbing lipid metabolism. Intracellular toxicity, followed by oxidative stress, had the greatest impact. Organisms are more sensitive to MPs under the following conditions: longer exposure duration, smaller MPs sizes, and earlier life stages. As the concentration of MPs increases, the levels of several liver indicators, including catalase, glutathione S-transferase, reactive oxygen species, and alkaline phosphatase, progressively increase. This study provides a comprehensive understanding of the effects of MPs on the liver and suggests the underlying mechanisms of MPs hepatotoxicity.

6.
Foodborne Pathog Dis ; 21(9): 526-535, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38904302

RESUMO

Listeria monocytogenes, one of the main foodborne pathogens, is commonly found in milk and dairy products. This study aimed to estimate the presence of L. monocytogenes in milk and dairy product supply chains using a meta-analysis based on PubMed, Embase, Web of Science, and Scopus databases. A total of 173 studies were included in this meta-analysis. The pooled prevalence in the supply chain environment was 8.69% (95% confidence interval [CI]: 5.30%-12.78%), which was higher than that in dairy products (4.60%, 95% CI: 1.72%-8.60%) and milk products (2.93%, 95% CI: 2.14%-3.82%). Subgroup analysis showed that L. monocytogenes prevalence in raw milk (3.44%, 95% CI: 2.61%-4.28%) was significantly higher than in pasteurized milk (0.60%, 95% CI: 0.00%-2.06%). The highest prevalence of L. monocytogenes in milk and dairy products was observed in North America (5.27%, 95% CI: 2.19%-8.35%) and South America (13.54%, 95% CI: 3.71%-23.37%). In addition, studies using culture and molecular methods (5.17%, 95% CI: 2.29%-8.06%) had higher prevalence than other detection methods. Serogroup 1/2a and 3a (45.34%, 95% CI: 28.74%-62.37%), serogroup 1/2b and 3b (14.23%, 95% CI: 6.05%-24.24%), and serogroup 4b/4e (13.71%, 95% CI: 6.18%-22.83%) were dominant in these studies. The results of this study provide a better understanding of the prevalence of L. monocytogenes in milk and dairy product supply chains and suggest a potential foodborne pathogen burden.


Assuntos
Laticínios , Microbiologia de Alimentos , Listeria monocytogenes , Leite , Listeria monocytogenes/isolamento & purificação , Leite/microbiologia , Laticínios/microbiologia , Animais , Prevalência , Contaminação de Alimentos/análise , Humanos , Pasteurização
7.
Nano Lett ; 23(7): 3070-3077, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36995751

RESUMO

Triggered by the expanding demands of semiconductor devices, strain engineering of two-dimensional transition metal dichalcogenides (TMDs) has garnered considerable research interest. Through steady-state measurements, strain has been proved in terms of its modulation of electronic energy bands and optoelectronic properties in TMDs. However, the influence of strain on the spin-orbit coupling as well as its related valley excitonic dynamics remains elusive. Here, we demonstrate the effect of strain on the excitonic dynamics of monolayer WS2 via steady-state fluorescence and transient absorption spectroscopy. Combined with theoretical calculations, we found that tensile strain can reduce the spin-splitting value of the conduction band and lead to transitions between different exciton states via spin-flip mechanism. Our findings suggest that the spin-flip process is strain-dependent, provides a reference for application of valleytronic devices, where tensile strain is usually existing during their design and fabrication.

8.
Phys Chem Chem Phys ; 25(9): 6674-6683, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36804667

RESUMO

The asymmetrical group III-VI monolayer Janus M2XY (M = Al, Ga, In; X ≠ Y = S, Se, Te) have attracted widespread attention due to their significant optical absorption properties, which are the potential building blocks for van der Waals (vdW) heterostructure solar cells. In this study, we unraveled an In2STe/GeH vdW heterostructure as a candidate for solar cells by screening the Janus M2XY and GeH monolayers on lattice mismatches and electronic band structures based on first-principles calculations. The results highlight that the In2STe/GeH vdW heterostructure exhibits a type-II band gap of 1.25 eV. The optical absorption curve of the In2STe/GeH vdW heterostructure indicates that it possesses significant optical absorption properties in the visible and ultraviolet light areas. In addition, we demonstrate that the In2STe/GeH vdW heterostructure shows high and directionally anisotropic carrier mobility and good stability. Furthermore, strain engineering improves the theoretical power conversion efficiency of the In2STe/GeH vdW heterostructure up to 19.71%. Our present study will provide an idea for designing Janus M2XY and GeH monolayer-based vdW heterostructures for solar cell applications.

9.
Ecotoxicol Environ Saf ; 253: 114691, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868036

RESUMO

There is evidence that the triazine herbicide atrazine, which is used extensively, is present in both surface water and groundwater, and its interfering effect on immune systems, endocrine systems, and tumours has been reported by laboratory and epidemiological studies. This study explored how atrazine affected 4T1 breast cancer cell development in vitro and in vivo. The obtained results showed that after exposure to atrazine, the cell proliferation and tumour volume were significantly increased and the expression of MMP2, MMP7, and MMP9 was upregulated. The thymus and spleen indices, the CD4 + and CD3 + lymphocyte percentages which from the spleen and inguinal lymph nodes, and the CD4 + /CD8 + ratio were noticeably lower than they were in the control group. Importantly, tumour-infiltrating lymphocytes such as CD4 + , CD8 + , and NK cells were decreased while Treg cells were increased. Moreover, IL-4 was increased and IFN-γ and TNF-α were decreased in the serum and tumour microenvironment. These results suggested that atrazine can suppress systemic as well as local tumour immune function and upregulate MMPs to promote breast tumour development.


Assuntos
Atrazina , Neoplasias da Mama , Herbicidas , Humanos , Feminino , Atrazina/toxicidade , Neoplasias da Mama/induzido quimicamente , Linfócitos T Reguladores , Herbicidas/toxicidade , Imunidade , Microambiente Tumoral
10.
Nano Lett ; 21(3): 1260-1266, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33492150

RESUMO

The efficient nondestructive assessment of quality and homogeneity for two-dimensional (2D) MoS2 is critically important to advance their practical applications. Here, we presented a rapid and large-area assessment method for visually evaluating the quality and uniformity of chemical vapor deposition (CVD)-grown MoS2 monolayers simply with conventional optical microscopes. This was achieved through one-pot adsorbing abundant sulfur particles selectively onto as-grown poorer-quality MoS2 monolayers in a CVD system without any additional treatment. We further revealed that this favorable adsorption of sulfur particles on MoS2 originated from their intrinsic higher-density sulfur vacancies. Based on unadsorbed MoS2 monolayers, superior performance field effect transistors with a mobility of ∼49 cm2 V-1 s-1 were constructed. Importantly, the assessment approach was noninvasive due to the all-vapor-phase and moderate adsorption-desorption process. Our work offers a new route for the performance and yield optimization of devices by quality assessment of 2D semiconductors prior to device fabrication.

11.
Small ; 17(50): e2103938, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34677904

RESUMO

Layered 2D transition metal dichalcogenides (TMDCs) exhibited fascinating nonlinear optical (NLO) properties for constructing varied promising optoelectronics. However, exploring the desired 2D materials with both superior nonlinear absorption and ultrafast response in broadband spectra remain the key challenges to harvest their greatest potential. Here, based on synthesizing 2D PdSe2 films with the controlled layer number, the authors systematically demonstrated the broadband giant NLO performance and ultrafast excited carrier dynamics of this emerging material under femtosecond visible-to-near-infrared laser-pulse excitation (400-1550 nm). Layer-dependent and wavelength-dependent evolution of optical bandgap, nonlinear absorption, and photocarrier dynamics in the obtained 2D PdSe2 are clearly revealed. Specially, the transition from semiconducting to semimetallic PdSe2 induced dramatic changes of their interband absorption-relaxation process. This work makes 2D PdSe2 more competitive for future ultrafast photonics and also opens up a new avenue for the optical performance optimization of various 2D materials by rational design of these materials.

12.
Nano Lett ; 19(2): 761-769, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30621399

RESUMO

Biaxial deformation of suspended membranes widely exists and is used in nanoindentation to probe elastic properties of structurally isotropic two-dimensional (2D) materials. However, the elastic properties and, in particular, the fracture behaviors of anisotropic 2D materials remain largely unclarified in the case of biaxial deformation. MoTe2 is a polymorphic 2D material with both isotropic (2H) and anisotropic (1T' and Td) phases and, therefore, an ideal system of single-stoichiometric materials with which to study these critical issues. Here, we report the elastic properties and fracture behaviors of biaxially deformed, polymorphic MoTe2 by combining temperature-variant nanoindentation and first-principles calculations. It is found that due to similar atomic bonding, the effective moduli of the three phases deviate by less than 15%. However, the breaking strengths of distorted 1T' and Td phases are only half the value of 2H phase due to their uneven distribution of bonding strengths. Fractures of both isotropic 2H and anisotropic 1T' phases obey the theorem of minimum energy, forming triangular and linear fracture patterns, respectively, along the orientations parallel to Mo-Mo zigzag chains. Our findings not only provide a reference database for the elastic behaviors of versatile MoTe2 phases but also illuminate a general strategy for the mechanical investigation of any isotropic and anisotropic 2D materials.

13.
Nat Mater ; 17(12): 1108-1114, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30323336

RESUMO

Two-dimensional (2D) MoS2, which has great potential for optoelectronic and other applications, is thermodynamically stable and hence easily synthesized in its semiconducting 2H phase. In contrast, growth of its metastable 1T and 1T' phases is hampered by their higher formation energy. Here we use theoretical calculations to design a potassium (K)-assisted chemical vapour deposition method for the phase-selective growth of 1T' MoS2 monolayers and 1T'/2H heterophase bilayers. This is realized by tuning the concentration of K in the growth products to invert the stability of the 1T' and 2H phases. The synthesis of 1T' MoS2 monolayers with high phase purity allows us to characterize their intrinsic optical and electrical properties, revealing a characteristic in-plane anisotropy. This phase-controlled bottom-up synthesis offers a simple and efficient way of manipulating the relevant device structures, and provides a general approach for producing other metastable-phase 2D materials with unique properties.

14.
Nano Lett ; 18(6): 3435-3440, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29782176

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) with layered structures provide a unique platform for exploring the effect of number of layers on their fundamental properties. However, the thickness scaling effect on the chemical properties of these materials remains unexplored. Here, we explored the chemically induced phase transition of 2D molybdenum disulfide (MoS2) from both experimental and theoretical aspects and observed that the critical electron injection concentration and the duration required for the phase transition of 2D MoS2 increased with decreasing number of layers. We further revealed that the observed dependence originated from the layer-dependent density of states of 2H-MoS2, which results in decreasing phase stability for 2H-MoS2 with increasing number of layers upon electron doping. Also, the much larger energy barrier for the phase transition of monolayer MoS2 induces the longer reaction time required for monolayer MoS2 as compared to multilayer MoS2. The layer-dependent phase transition of 2D MoS2 allows for the chemical construction of semiconducting-metallic heterophase junctions and, subsequently, the fabrications of rectifying diodes and all 2D field effect transistors and thus opens a new avenue for building ultrathin electronic devices. In addition, these new findings elucidate how electronic structures affect the chemical properties of 2D TMDCs and, therefore, shed new light on the controllable chemical modulations of these emerging materials.

15.
Angew Chem Int Ed Engl ; 58(21): 6977-6981, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30919540

RESUMO

Two-dimensional (2D) PtSe2 shows the most prominent layer-dependent electrical properties among various 2D materials and high catalytic activity for hydrogen evolution reaction (HER), and therefore, it is an ideal material for exploring the structure-activity correlations in 2D systems. Here, starting with the synthesis of single-crystalline 2D PtSe2 with a controlled number of layers and probing the HER catalytic activity of individual flakes in micro electrochemical cells, we investigated the layer-dependent HER catalytic activity of 2D PtSe2 from both theoretical and experimental perspectives. We clearly demonstrated how the number of layers affects the number of active sites, the electronic structures, and electrical properties of 2D PtSe2 flakes and thus alters their catalytic performance for HER. Our results also highlight the importance of efficient electron transfer in achieving optimum activity for ultrathin electrocatalysts. Our studies greatly enrich our understanding of the structure-activity correlations for 2D catalysts and provide new insight for the design and synthesis of ultrathin catalysts with high activity.

16.
Angew Chem Int Ed Engl ; 56(13): 3611-3615, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28220992

RESUMO

Developing controlled approaches for synthesizing high-quality two-dimensional (2D) semiconductors is essential for their practical applications in novel electronics. The application of chemical vapor transport (CVT), an old single-crystal growth technique, has been extended from growing 3D crystals to synthesizing 2D atomic layers by tuning the growth kinetics. Both single crystalline individual flakes and continuous films of 1 L MoS2 were successfully obtained with CVT approach at low growth temperatures of 300-600 °C. The obtained 1 L MoS2 exhibits high crystallinity and comparable mobility to mechanically exfoliated samples, as confirmed by both atomic resolution microscopic imaging and electrical transport measurements. Besides MoS2 , this method was also used in the growth of 2D WS2 , MoSe2 , Mox W1-x S2 alloys, and ReS2 , thus opening up a new way for the controlled synthesis of various 2D semiconductors.

17.
J Am Chem Soc ; 138(50): 16216-16219, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27998095

RESUMO

Two-dimensional (2D) metallic transition metal dichalcogenides (TMDCs), such as 1T-TiSe2, are ideal systems for exploring the fundamentals in condensed matter physics. However, controlled synthesis of these ultrathin materials has not been achieved. Here, we explored the synthesis of charge density wave (CDW)-bearing 2D TiSe2 with chemical vapor transport (CVT) by extending this bulk crystal growth approach to the surface growth of TiSe2 by introducing suitable growth substrates and dramatically slowing down the growth rate. Sub-10 nm TiSe2 flakes were successfully obtained, showing comparable quality to the mechanically exfoliated thin flakes. A CDW state with 2 × 2 superstructure was clearly observed on these ultrathin flakes by scanning tunneling microscopy (STM), and the phase transition temperature of these flakes was investigated by transport measurements, confirming the existence of CDW states. Our work opens up a new approach to synthesizing 2D CDW and superconductive TMDCs for exploring new fundamentals and applications in novel electronics.

18.
J Reprod Immunol ; 163: 104249, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678819

RESUMO

Recurrent spontaneous abortion (RSA) affects approximately 1 % of women striving for conception, posing a significant clinical challenge. This study aimed to identify a prognostic signature in RSA and elucidate its molecular mechanisms. Prognostic gene impacts were further assessed in HTR-8/SVneo and human primary extravillous trophoblast (EVT) cells in vitro experiments. A total of 6168 differentially expressed genes (DEGs) were identified, including 3035 upregulated and 3133 downregulated genes. WGCNA pinpointed 8 significant modules and 31 ferroptosis-related DEGs in RSA. Optimal clustering classified RSA patients into three distinct subgroups, showing notable differences in immune cell composition. Six feature genes (AEBP2, CISD2, PML, RGS4, SRSF9, STK11) were identified. The diagnostic model showed high predictive capabilities (AUC: 0.966). Mendelian randomization indicated a significant association between CISD2 levels and RSA (OR: 1.069, P-value: 0.049). Furthermore, the downregulation of CISD2 promotes ferroptosis in HTR-8/SVneo and human primary EVT cells. CISD2 emerged as a pivotal gene in RSA, serving as a ferroptosis-related therapeutic target. The diagnostic model based on gene expression and Mendelian randomization provides novel insights into the pathogenesis of RSA.


Assuntos
Aborto Habitual , Ferroptose , Análise da Randomização Mendeliana , Adulto , Feminino , Humanos , Gravidez , Aborto Habitual/imunologia , Aborto Habitual/genética , Linhagem Celular , Ferroptose/genética , Ferroptose/imunologia , Prognóstico , Trofoblastos/imunologia , Trofoblastos/metabolismo , Trofoblastos/patologia
19.
Clin Transl Oncol ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367897

RESUMO

BACKGROUND: Endometrial cancer (UCEC) is one of the most common malignant tumors in gynecology, and early diagnosis is crucial for its treatment. Currently, there is a lack of early screening tests specific to UCEC, and treatment advances are limited. It is crucial to identify more sensitive biomarkers for screening, diagnosis, and predicting UCEC. Previous studies have shown that UBE2T is involved in the development of various tumors such as breast cancer and liver cancer, but research on the role of UBE2T in UCEC is limited. METHODS: Using data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and UALCAN databases, we analyzed the differential expression of UBE2T mRNA and protein in endometrial cancer (UCEC), along with its clinical relevance. A total of 113 clinical samples were collected, and immunohistochemistry and Western blot analysis were employed to validate bioinformatics analysis results. Volcano plots were generated using UBE2T and its differentially expressed genes, and a protein-protein interaction (PPI) network was constructed. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), and immune infiltration analysis were used to predict the functional role of UBE2T in UCEC progression. Correlation between UBE2T expression and patient survival was analyzed using TCGA data, and Kaplan-Meier survival curves were plotted. RESULTS: UBE2T is significantly overexpressed in UCEC and correlates with poor prognosis. Its overexpression is closely associated with mitosis, cell cycle regulation, and histological grade in UCEC patients. CONCLUSION: UBE2T is highly expressed in UCEC and suppresses anti-tumor immune responses in UCEC patients. It serves as a key participant in UCEC progression, associated with a range of adverse outcomes, and holds potential as a clinical diagnostic and prognostic biomarker.

20.
Chem Sci ; 15(8): 2898-2913, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404395

RESUMO

The core factors dictating the photocatalysis efficiency are predominantly centered on controllable modulation of anisotropic spatial charge transfer/separation and regulating vectorial charge transport pathways. Nonetheless, the sluggish charge transport kinetics and incapacity of precisely tuning interfacial charge flow at the nanoscale level are still the primary dilemma. Herein, we conceptually demonstrate the elaborate design of a cascade charge transport chain over transition metal chalcogenide-insulating polymer-cocatalyst (TIC) photosystems via a progressive self-assembly strategy. The intermediate ultrathin non-conjugated insulating polymer layer, i.e., poly(diallyl-dimethylammonium chloride) (PDDA), functions as the interfacial electron relay medium, and simultaneously, outermost co-catalysts serve as the terminal "electron reservoirs", synergistically contributing to the charge transport cascade pathway and substantially boosting the interfacial charge separation. We found that the insulating polymer mediated unidirectional charge transfer cascade is universal for a large variety of metal or non-metal reducing co-catalysts (Au, Ag, Pt, Ni, Co, Cu, NiSe2, CoSe2, and CuSe). More intriguingly, such peculiar charge flow characteristics endow the self-assembled TIC photosystems with versatile visible-light-driven photoredox catalysis towards photocatalytic hydrogen generation, anaerobic selective organic transformation, and CO2-to-fuel conversion. Our work would provide new inspiration for smartly mediating spatial vectorial charge transport towards emerging solar energy conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA