Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 15, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38170310

RESUMO

Fungal infection has become a major threat to crop loss and affects food safety. The waste water from agar processing industries extraction has a number of active substances, which could be further transformed by microorganisms to synthesize antifungal active substances. In this study, Bacillus subtilis was used to ferment the waste water from agar processing industries extraction to analyze the antifungal activity of the fermentation broth on Alternaria alternata and Alternaria spp. Results showed that 25% of the fermentation broth was the most effective in inhibited A. alternata and Alternaria spp., with fungal inhibition rates of 99.9% and 96.1%, respectively, and a minimum inhibitory concentration (MIC) was 0.156 µg/mL. Metabolomic analysis showed that flavonoid polyphenols such as coniferyl aldehyde, glycycoumarin, glycitin, and procyanidin A1 may enhance the inhibitory activity against the two pathogenic fungal strains. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that polyphenols involved in the biosynthesis pathways of isoflavonoid and phenylpropanoid were upregulated after fermentation. The laser confocal microscopy analyses and cell conductivity showed that the cytoplasm of fungi treated with fermentation broth was destroyed. This study provides a research basis for the development of new natural antifungal agents and rational use of seaweed agar waste. KEY POINTS: • Bacillus subtilis fermented waste water has antifungal activity • Bacillus subtilis could transform active substances in waste water • Waste water is a potential raw material for producing antifungal agents.


Assuntos
Antifúngicos , Bacillus subtilis , Bacillus subtilis/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Ágar , Águas Residuárias , Fermentação , Alternaria
2.
World J Microbiol Biotechnol ; 40(7): 216, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802708

RESUMO

Poor thermostability reduces the industrial application value of κ-carrageenase. In this study, the PoPMuSiC algorithm combined with site-directed mutagenesis was applied to improve the thermostability of the alkaline κ-carrageenase from Pseudoalteromonas porphyrae. The mutant E154A with improved thermal stability was successfully obtained using this strategy after screening seven rationally designed mutants. Compared with the wild-type κ-carrageenase (WT), E154A improved the activity by 29.4% and the residual activity by 51.6% after treatment at 50 °C for 30 min. The melting temperature (Tm) values determined by circular dichroism were 66.4 °C and 64.6 °C for E154A and WT, respectively. Molecular dynamics simulation analysis of κ-carrageenase showed that the flexibility decreased within the finger regions (including F1, F2, F3, F5 and F6) and the flexibility improved in the catalytic pocket area of the mutant E154A. The catalytic tunnel dynamic simulation analysis revealed that E154A led to enlarged catalytic tunnel volume and increased rigidity of the enzyme-substrate complex. The increasing rigidity within the finger regions and more flexible catalytic pocket of P. porphyrae κ-carrageenase might be a significant factor for improvement of the thermostability of the mutant κ-carrageenase E154A. The proposed rational design strategy could be applied to improve the enzyme kinetic stability of other industrial enzymes. Moreover, the hydrolysates of κ-carrageenan digested by the mutant E154A demonstrated increased scavenging activities against hydroxyl (OH) radicals and 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radicals compared with the undigested κ-carrageenan.


Assuntos
Domínio Catalítico , Estabilidade Enzimática , Glicosídeo Hidrolases , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Pseudoalteromonas , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Pseudoalteromonas/enzimologia , Pseudoalteromonas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cinética , Temperatura , Dicroísmo Circular , Conformação Proteica , Carragenina/metabolismo
3.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37580133

RESUMO

Astaxanthin has high utilization value in functional food because of its strong antioxidant capacity. However, the astaxanthin content of Phaffia rhodozyma is relatively low. Adaptive laboratory evolution is an excellent method to obtain high-yield strains. TiO2 is a good inducer of oxidative stress. In this study, different concentrations of TiO2 were used to domesticate P. rhodozyma, and at a concentration of 1000 mg/L of TiO2 for 105 days, the optimal strain JMU-ALE105 for astaxanthin production was obtained. After fermentation, the astaxanthin content reached 6.50 mg/g, which was 41.61% higher than that of the original strain. The ALE105 strain was fermented by batch and fed-batch, and the astaxanthin content reached 6.81 mg/g. Transcriptomics analysis showed that the astaxanthin synthesis pathway, and fatty acid, pyruvate, and nitrogen metabolism pathway of the ALE105 strain were significantly upregulated. Based on the nitrogen metabolism pathway, the nitrogen source was adjusted by ammonium sulphate fed-batch fermentation, which increased the astaxanthin content, reaching 8.36 mg/g. This study provides a technical basis and theoretical research for promoting industrialization of astaxanthin production of P. rhodozyma. ONE-SENTENCE SUMMARY: A high-yield astaxanthin strain (ALE105) was obtained through TiO2 domestication, and its metabolic mechanism was analysed by transcriptomics, which combined with nitrogen source regulation to further improve astaxanthin yield.


Assuntos
Xantofilas , Evolução Molecular Direcionada , Perfilação da Expressão Gênica , Basidiomycota/química , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/crescimento & desenvolvimento , Biomassa , Glucose/análise , Carotenoides/análise , Fermentação , Técnicas de Cultura Celular por Lotes , Nitrogênio/metabolismo , Xantofilas/química , Xantofilas/metabolismo
4.
Int Wound J ; 20(10): 4272-4280, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37525509

RESUMO

The meta-analysis aims to evaluate and compare the impact of the combination of stem cells (SCs) and light-based treatments (LBTs) on skin wound (SW) repair. Examinations comparing SCs to LBT with SCs for SW repair was among the meta-analysis from various languages that met the inclusion criteria. Using continuous random-effect models, the results of these investigations were examined, and the mean difference (MD) with 95% confidence intervals was computed (CIs). Seven examinations from 2012 to 2022 were recruited for the current analysis including 106 animals with SWs. Photobiomodulation therapy (PBT) plus SCs had a significantly higher wound closure rate (WCR) (MD, 9.08; 95% CI, 5.55-12.61, p < 0.001) compared to SCs in animals with SWs. However, no significant difference was found between PBT plus SCs and SCs on wound tensile strength (WTS) (MD, 2.01; 95% CI, -0.42 to 4.44, p = 0.10) in animals with SWs. The examined data revealed that PBT plus SCs had a significantly higher WCR, however, no significant difference was found in WTS compared to SCs in animals with SWs. Nevertheless, caution should be exercised while interacting with its values since all the chosen examinations were found with a low sample size and a low number of examinations were found for the comparisons studied for the meta-analysis.


Assuntos
Lesões dos Tecidos Moles , Animais , Transplante de Pele
5.
Biochem Biophys Res Commun ; 468(1-2): 214-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26523510

RESUMO

Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-ß1 (TGF-ß1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-ß1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control. Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-ß1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-ß1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening.


Assuntos
Antioxidantes/uso terapêutico , Benzofuranos/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/patologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Animais , Antioxidantes/farmacologia , Benzofuranos/farmacologia , Bleomicina , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Módulo de Elasticidade , Humanos , Pulmão/metabolismo , Masculino , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta1/metabolismo
6.
Int J Dermatol ; 63(5): 647-654, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38173361

RESUMO

BACKGROUND: Information on lentigo maligna (LM) and lentigo maligna melanoma (LMM) in the 21st century is scarce. We aimed to elucidate the incidence of LM and LMM using the Surveillance, Epidemiology, and End Results (SEER) 17 Registries. METHODS: The data of patients diagnosed between 2000 and 2019 were extracted from the SEER database. The percentage of LM/LMM cases among all melanoma patients, age-standardized incidence rates, estimated annual percentage changes, and the cumulative incidence of LMM after LM were calculated. RESULTS: The SEER data yielded 95,175 patients with LM/LMM between 2000 and 2019. Cases of LM/LMM accounted for 15.7% of all melanomas. The age-standardized incidence per 100,000 person-years for LM increased from 4.16 to 5.61 and for LMM from 1.33 to 2.35 between 2000 and 2019. The annual increase in incidence of LM was 2.42%, and that of LMM was 3.32%. The cumulative incidence of LMM after a primary LM after 10-year follow-up was 0.94%. CONCLUSIONS: This study provides the first comprehensive analysis of the epidemiological status of LM/LMM in the United States in the 21st century using the population-based SEER data.


Assuntos
Sarda Melanótica de Hutchinson , Melanoma , Programa de SEER , Neoplasias Cutâneas , Humanos , Sarda Melanótica de Hutchinson/epidemiologia , Sarda Melanótica de Hutchinson/patologia , Incidência , Estados Unidos/epidemiologia , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/patologia , Programa de SEER/estatística & dados numéricos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Melanoma/epidemiologia , Idoso de 80 Anos ou mais , Adulto Jovem , Adolescente
7.
AMB Express ; 14(1): 8, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245573

RESUMO

The industrial applications of the κ-carrageenases have been restricted by their poor thermostability. In this study, based on the folding free energy change (ΔΔG) and the flexibility analysis using molecular dynamics (MD) simulation for the alkaline κ-carrageenase KCgCD from Pseudoalteromonas porphyrae (WT), the mutant S190R was identified with improved thermostability. After incubation at 50 °C for 30 min, the residual activity of S190R was 63.7%, 25.7% higher than that of WT. The Tm values determined by differential scanning calorimetry were 66.2 °C and 64.4 °C for S190R and WT, respectively. The optimal temperature of S190R was 10 °C higher than that of WT. The κ-carrageenan hydrolysates produced by S190R showed higher xanthine oxidase inhibitory activity compared with the untreated κ-carrageenan. MD simulation analysis of S190R showed that the residues (V186-M194 and P196-G197) in F5 and the key residue R150 in F3 displayed the decreased flexibility, and residues of T169-N173 near the catalytic center displayed the increased flexibility. These changed flexibilities might be the reasons for the improved thermostability of mutant S190R. This study provides a useful rational design strategy of combination of ΔΔG calculation and MD simulation to improve the κ-carrageenase's thermostability for its better industrial applications.

8.
Food Funct ; 14(2): 1133-1147, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36594623

RESUMO

A combination of polysaccharides and tea polyphenols can enhance immune activity synergistically, depending on the type and structure of polysaccharides, but the mechanism remains unknown. This study is aimed to investigate the regulating effects of different seaweed polysaccharide (ι-carrageenan, agarose) and tea polyphenol blends on intestinal flora and intestinal inflammation using an in vitro ascending-transverse-descending colon fermentation system and RAW264.7 cell model. The results showed that seaweed polysaccharides in the presence of tea polyphenol were almost completely degraded at transverse colon fermentation for 36 h. Agarose significantly enhanced the butyric acid production content by increasing the abundance of Lachnospiraceae, whereas agarose and tea polyphenol blends did not have a synergistic effect. On the contrary, ι-carrageenan and tea polyphenol blends synergistically increased the abundance of beneficial bacteria (e.g., Bacteroidetes and Bifidobacterium) and promoted the production of short-chain fatty acids (SCFAs), such as isobutyric acid. Such changes tended to alter the impacts of different seaweed polysaccharides and tea polyphenol blends on intestinal inflammation. Among them, ι-carrageenan and tea polyphenol blends were the most effective in inhibiting lipopolysaccharide-induced NO, ROS, IL-6, and TNF-α production in RAW264.7 cells, indicating the alleviated intestinal inflammation. The results suggest that the seaweed polysaccharide and tea polyphenol blends have prebiotic potential and can benefit intestinal health.


Assuntos
Microbioma Gastrointestinal , Alga Marinha , Humanos , Alga Marinha/metabolismo , Fermentação , Carragenina , Sefarose , Polifenóis/farmacologia , Polissacarídeos/farmacologia , Chá/química , Inflamação
9.
Food Funct ; 14(24): 10747-10758, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37975749

RESUMO

Herein, we studied the in vitro-simulated intestinal flora fermentation of Porphyra haitanensis polysaccharides (PHPs) with microwave, ultrasonic, ultra-high pressure-assisted extraction and the protective effect of their fermented products against HT-29 human colon cancer cells. The results showed that PHPs were largely degraded at the 18 h stage of ascending colon fermentation, further greatly increasing the contents of reducing sugars and short-chain fatty acids (p < 0.05). Particularly, the PHPs subjected to ultra-high pressure-assisted extraction (UHP-PHP) showed the highest reducing sugar content of 1.68 ± 0.01 mg mL-1 and butyric acid content of 410.77 ± 7.99 mmol mL-1. Moreover, UHP-PHP showed a better effect in increasing the ratio of Bacteroidetes/Firmicutes and decreasing the abundance of Proteobacteria and Escherichia coli. PHPs could protect against HT-29 cells by increasing the ROS levels in a concentration-dependent manner, especially UHP-PHP fermented in a descending colon for 24 h. This was related to the up-regulated apoptosis-related genes (Bax and Bak), down-regulated protein expression of Bcl-2 and activation of the p-AKT protein, thereby promoting the apoptosis of HT-29 cells. Our results can facilitate the modification of PHPs and their practical application in the development of intestinal health improving products.


Assuntos
Neoplasias do Colo , Microbioma Gastrointestinal , Porphyra , Humanos , Células HT29 , Fermentação , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Neoplasias do Colo/tratamento farmacológico , Ácido Butírico
10.
Int J Biol Macromol ; 242(Pt 2): 125003, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217048

RESUMO

This study was to investigate the structure and antioxidant activity of Porphyra haitanensis polysaccharides (PHPs) extracted by different methods, including water extraction (PHP), ultra-high pressure (UHP-PHP), ultrasonic (US-PHP) and microwave assisted water extraction (M-PHP). Compared with water extraction, the total sugar, sulfate and uronic acid contents of PHPs was enhanced by ultra-high pressure, ultrasonic and microwave assisted treatments, especially those of UHP-PHP were increased by 24.35 %, 12.84 % and 27.51 %, respectively (p < 0.05). Meanwhile, these assisted treatments affected the monosaccharide ratio of polysaccharides and significantly reduced the protein content, molecular weight as well as particle size of PHPs (p < 0.05), and resulted in a loose microstructure with more porosity and fragments. PHP, UHP-PHP, US-PHP, and M-PHP all possessed in vitro antioxidant capacity. Among them, UHP-PHP had the strongest oxygen radical absorbance capacity, DPPH and ·OH radicals scavenging capacities, which increased by 48.46 %, 116.24 %, and 14.98 % respectively. Moreover, PHPs particularly UHP-PHP effectively increased the cell viability and reduced ROS levels of H2O2 induced RAW264.7 cells (p < 0.05), indicating their good effects against cell oxidative damage. The findings suggested that PHPs with ultra-high pressure assisted treatments has the better potential to develop natural antioxidant.


Assuntos
Antioxidantes , Porphyra , Antioxidantes/química , Porphyra/química , Peróxido de Hidrogênio/metabolismo , Polissacarídeos/química , Água/metabolismo
11.
Int J Biol Macromol ; 252: 126401, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597638

RESUMO

κ-Carrageenase can degrade κ-carrageenan to produce bioactive κ-carrageenan oligosaccharides (KCOs) that have potential applications in pharmaceutical, food, agricultural, and cosmetics industries. Immobilized enzymes gain their popularity due to their good reusability, enhanced stability, and tunability. In this study, the previously characterized catalytic domain of Pseudoalteromonas purpurea κ-carrageenase was covalently immobilized on the synthesized amine-modified zeolitic imidazolate framework-8 nanoparticles with the formation of cross-linked enzyme aggregates, and the immobilized κ-carrageenase was further characterized. The immobilized κ-carrageenase demonstrated excellent pH stability and good reusability, and exhibited higher optimal reaction temperature, better thermostability, and extended storage stability compared with the free enzyme. The KCOs produced by the immobilized κ-carrageenase could significantly decrease the TC, TG, and LDL-C levels in HepG2 cells, increase the HDL-C level in HepG2 cells, and reduce the free fatty acids level in Caco-2 cells. Biochemical assays showed that the KCOs could activate AMPK activity, increase the ratios of p-AMPK/AMPK and p-ACC/ACC, and downregulate the expression of the lipid metabolism related proteins including SREBP1 and HMGCR in the hyperlipidemic HepG2 cells. This study provides a novel and effective method for immobilization of κ-carrageenase, and the KCOs produced by the immobilized enzyme could be a potential therapeutic agent to prevent hyperlipidemia.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteínas de Bactérias , Humanos , Carragenina/química , Células CACO-2 , Células Hep G2 , Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Oligossacarídeos/química , Enzimas Imobilizadas
12.
Gels ; 9(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36975664

RESUMO

The effect of black tea powder on the antioxidant activity and gel characteristics of fish balls from silver carp were investigated after freezing storage for 7 days. The results show that black tea powder with different concentrations of 0.1%, 0.2% and 0.3% (w/w) could significantly increase the antioxidant activity of fish balls (p < 0.05). In particular, at the concentration of 0.3%, the antioxidant activity was the strongest among these samples, where the reducing power, DPPH, ABTS and OH free radical scavenging rate were up to 0.33, 57.93%, 89.24% and 50.64%, respectively. In addition, black tea powder at the level of 0.3% significantly increased the gel strength, hardness and chewiness while greatly reducing the whiteness of the fish balls (p < 0.05). ESEM observation found that the addition of black tea powder could promote the crosslinking of proteins and reduced the pore size of the gel network structure of the fish balls. The results suggest that black tea powder could be used as a natural antioxidant and gel texture enhancer in fish balls, which we found to be much related to the phenolic compounds of black tea powder.

13.
Enzyme Microb Technol ; 167: 110241, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060759

RESUMO

κ-Carrageenase provides an attractive enzymatic approach to preparation of κ-carrageenan oligosaccharides. Pseudoalteromonas tetraodonis κ-carrageenase is active at the alkaline conditions but displays low thermostability. To further improve its enzymatic performance, two mutants of Q42V and I51H exhibiting both improved thermostability and enzyme activity were screened by the PoPMuSiC algorithm. Compared with the wild-type κ-carrageenase (WT), Q42V and I51H increased the enzyme activity by 20.9% and 25.4%, respectively. After treatment at 50 â„ƒ for 40 min, Q42V and I51H enhanced the residual activity by 31.1% and 25.9%, respectively. The Tm values of Q42V, I51H, and WT determined by differential scanning calorimetry were 58.2 â„ƒ, 54.8 â„ƒ, and 51.2 â„ƒ, respectively. Compared with untreated and HCl-treated κ-carrageenans, Q42V-treated κ-carrageenan exhibited higher pancreatic lipase inhibitory activity. Molecular docking analysis indicated that the additional pi-sigma force and hydrophobic interaction in the enzyme-substrate complex could account for the increased catalytic activity of Q42V and I51H, respectively. Molecular dynamics analysis indicated that the improved thermostability of mutants Q42V and I51H could be attributed to the less structural deviation and the flexible changes of enzyme conformation at high temperature. This study provides new insight into κ-carrageenase performance improvement and identifies good candidates for their industrial applications.


Assuntos
Glicosídeo Hidrolases , Pseudoalteromonas , Carragenina/química , Simulação de Acoplamento Molecular , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Pseudoalteromonas/genética
14.
Food Funct ; 13(3): 1119-1132, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35018397

RESUMO

To find natural and safe anti-diabetic foods or potential drugs, low-molecular-weight saccharide fragments LMWAs-H (Mw 33.48 kDa) and LMWAs-L (Mw 6.71 kDa) from the sulfated polysaccharide ascophyllan of Ascophyllum nodosum using alginate lyase (EC 4.2.2.3) were investigated. The results revealed that LMWAs-H possessed potent inhibition activity against α-glucosidase or α-amylase in a concentration-dependent manner, which were higher than native ascophyllan or LMWAs-L. LMWAs-H exhibited a stronger inhibitory activity against α-glucosidase than α-amylase because it differently affects the conformational structures of these enzymes. Structural analysis revealed LMWAs-H to be →4)-α-L-Fucp-(1 → 4)-α-L-Fucp-(1 → 3)-ß-D-Xylp-(1 → 3)-α-L-Fucp4S(1→ as main chain, and T-α-D-Glcp-(1→ and →3)-ß-D-ManpAred residues were attached to the ends of main chain as non-reducing- and reducing-end residues, respectively. The 4-deoxy-L-erythro-hex-4-enuronosyluronate linked the O-4 position of →3,4)-ß-D-ManpAred residue as side branches. Our results suggest that LMWAs-H is the main active structural motif responsible for the enzymes-inhibiting activities, which is probably derived from the fucose-containing branches of ascophyllan. Our findings reveal that the strong inhibition of LMWAs-H on α-glucosidase but mild inhibition on α-amylase is highly related to its structural properties, suggesting its desirable characteristics as an anti-diabetic agent.


Assuntos
Fucose/metabolismo , Polissacarídeos/metabolismo , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
15.
Polymers (Basel) ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35160507

RESUMO

Pomelo fruitlets have the potential for extracting cellulose. This study aimed to investigate characterization and functionality of cellulose extracted from pomelo fruitlets by different extraction methods. Cellulose extracted by acidic-alkaline hydrogen peroxide hydrolysis (CAA), alkaline hydrogen peroxide hydrolysis (CA), and ultrasonic assisted alkaline hydrogen peroxide hydrolysis (CUA) were prepared from pomelo fruitlets. The results showed that cellulose CUA had higher yield and purity with higher crystallinity and smaller particle size than those of CAA or CA (p < 0.05). Specifically, the yield of CUA was 82.75% higher than that of CAA, and purity was increased by 26.42%. Additionally, water- and oil-holding capacities of CUA were superior to those of CAA or CA, increasing by 13-23% and 10-18%, respectively. The improvement of water- and oil-holding capacities were highly related to its smaller particle size with increased surface area. The results suggested that ultrasonic assisted alkaline hydrogen peroxide hydrolysis is a promising and efficient method to prepare high-purity cellulose from pomelo fruitlets, and this cellulose is expected to be a food stabilizer and pharmaceutical additive.

16.
Food Sci Nutr ; 10(11): 3759-3771, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36348786

RESUMO

Phosphate is widely used in surimi products to improve the gel properties. However, excess addition of phosphate occurs, which can harm the consumer's health. This study aimed to evaluate the effects of agar gum and fucoidan on maintaining the gel properties of surimi products instead of phosphate. Interestingly, our results showed that 0.125% of agar gum and fucoidan to replace phosphate could enhance water-holding capacity and maintain gel strength and textual properties of surimi products well. Especially at frozen storage for 1 year, 0.125% of agar gum reduced the expressible moisture content of surimi products by around 10% (p < .05). Sensory evaluation showed that 0.125% of agar gum and fucoidan instead of phosphate can improve tissue and fondness of surimi products in refrigerated storage for 24 h but not in frozen storage for 1 year. The addition of agar gum and fucoidan at a high concentration >0.50% increased the WHC, but significantly decreased gel strength and springiness of surimi products (p < .05). Particularly, 1.00% of agar gum and fucoidan reduced gel strength by around 20% (p < .05). It might be due to the destruction of the gel network structure of surimi protein following the excess addition of these polysaccharides. It can be concluded that 0.125% of agar gum and fucoidan can replace phosphate to develop high-quality surimi products, and excessive addition of them have negative effects.

17.
Int J Biol Macromol ; 222(Pt A): 818-829, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174866

RESUMO

Polysaccharide extracted from red seaweed Bangia fusco-purpurea (BFP) is a novel sulfated galactan, differed from agarans and carrageenans in fine structure. In this study, in vitro fermentation characteristics of BFP by human gut microbiota and its protective effect on lipopolysaccharide (LPS)-induced injury in Caco-2 cells were investigated. Our results showed that BFP was mainly degraded at transverse colon for 18 h fermentation by gut microbiota with reduced molecular weight. Meanwhile, BFP fermentation was associated with increased short-chain fatty acids (SCFAs) as compared to control group, especially acetic acid was increased to 129.53 ± 0.24 from 82.14 ± 0.23 mmol/L, and butyric acid was up to 1.56 ± 0.004 from 0.62 ± 0.01 mmol/L. Furthermore, BFP promoted abundances of Bacteroidetes and Firmicutes, while decreased numbers of Proteobacteria. The up-regrated beneficial differential metabolites were SCFAs, L-proline, arginine, folic acid, pyridoxamine, thiamine, etc. (p < 0.05), and their related metabolic pathways mainly included mTOR, arginine biosynthesis, and vitamin metabolism. Notably, BFP fermentation products at transverse colon significantly restored cell viability of LPS-treated Caco-2 cells from 73.79 ± 0.48 % to 93.79-99.64 %, which might be caused by increased beneficial differential metabolites (e.g., SCFAs). Our findings suggest that BFP has prebiotic potential and can enhance gut health.


Assuntos
Microbioma Gastrointestinal , Rodófitas , Humanos , Arginina/farmacologia , Células CACO-2 , Ácidos Graxos Voláteis/farmacologia , Fermentação , Lipopolissacarídeos/farmacologia , Polissacarídeos/química , Rodófitas/metabolismo
18.
Front Nutr ; 9: 819319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35614980

RESUMO

Global warming has prompted scientific communities to consider how to alleviate thermal stress in humans and animals. The present study assessed the supplementation of hsian-tsao extract (HTE) on thermal stress in Drosophila melanogaster and preliminarily explicated its possible physiological and molecular mechanisms. Our results indicated that the lethal time for 50% of female flies fed on HTE was significantly longer than that of male flies at the same heat stress temperature. Under thermal stress, the survival time of females was remarkably increased in the HTE addition groups compared to the non-addition group. Thermal hardening by acute exposure to 36°C for 30 min (9:00 to 9:30 a.m.) every day could significantly prolong the longevity of females. Without thermal hardening, HTE increased the antioxidant capacity of females under heat stress, accompanied by an increment of catalase (CAT) activity, and the inhibition for hydroxyl radicals (OH⋅) and superoxide anions (⋅O2 -). Superoxide dismutase (SOD) activity and the inhibition for ⋅O2 - was significantly affected by thermal hardening in the non-HTE addition groups, and significant differences were shown in CAT and SOD activities, and the inhibition for ⋅O2 - among groups with thermal hardening. After heat exposure, heat shock protein 70 (Hsp70) was only up-regulated in the group with high levels of added HTE compared with the group without and this was similar in the thermal hardening group. It was concluded that the heat stress-relieving ability of HTE might be partly due to the enhancement of enzymatic activities of SOD and CAT, and the inhibition for OH⋅ and ⋅O2 -. However, the expression levels of Hsp70 were not well related to thermal tolerance or heat survival.

19.
Int J Food Microbiol ; 373: 109713, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35597005

RESUMO

The increasing demand for ready-to-eat fresh foods requires the use of non-thermal sterilization, hence, the application of antimicrobial peptides (AMPs) combined with ultrasound could serve as a novel food preservation method to prevent foodborne diseases. In this study, in silico tools were used to predict and screen potential AMPs from the antimicrobial amino acid sequence of myosin heavy chain of Larimichthys crocea. A novel AMP, designated as LCMHC, had strong antibacterial activity against Staphylococcus aureus when combined with low-intensity ultrasound treatment. The minimal inhibitory concentration (MIC) of LCMHC was 125 µg/mL when used alone but 31.25 µg/mL when combined with 0.3 W/cm2 ultrasound treatment. Structural analysis using circular dichroism (CD) revealed that peptide LCMHC has α-helical structure, which had slightly untwisting effect with increasing ultrasonic intensity. Transmission electron microscopy and permeability analysis of bacteria cell membrane showed that low-intensity ultrasound combined with peptide LCMHC could greatly improve the cell membrane permeability of S. aureus. Moreover, low intensity-ultrasound could assist the entry of more peptide LCMHC into bacterial cells to bind DNA. The findings here provide new insight into the potential application of peptide LCMHC combined with low-intensity ultrasound in the food industry.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia
20.
AMB Express ; 12(1): 139, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335230

RESUMO

Marine bacterium Microbulbifer sp. ALW1 was revealed to be able to effectively degrade Laminaria japonica thallus fragments into fine particles. Polysaccharide substrate specificity analysis indicated that ALW1 could produce extracellular alginate lyase, laminarinase, fucoidanase and cellulase. Based on alignment of the 16 S rRNA sequence with other reference relatives, ALW1 showed the closest relationship with Microbulbifer aggregans CCB-MM1T. The cell morphology and some basic physiological and biochemical parameters of ALW1 cells were characterised. ALW1 is a Gram-negative, rod- or oval-shaped, non-spore-forming and non-motile bacterium. The DNA-DNA relatedness values of ALW1 with type strains of M. gwangyangensis (JCM 17,800), M. aggregans (JCM 31,875), M. maritimus (JCM 12,187), M. okinawensis (JCM 16,147) and M. rhizosphaerae (DSM 28,920) were 28.9%, 43.3%, 41.2%, 35.4% and 45.6%, respectively. The major cell wall sugars of ALW1 were determined to be ribose and galactose, which differed from other closely related species. These characteristics indicated that ALW1 could be assigned to a separate species of the genus Microbulbifer. The complete genome of ALW1 contained one circular chromosome with 4,682,287 bp and a GC content of 56.86%. The putative encoded proteins were categorised based on their functional annotations. Phenotypic, physiological, biochemical and genomic characterisation will provide insights into the many potential industrial applications of Microbulbifer sp. ALW1.Key points.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA