Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Med Image Anal ; 93: 103102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367598

RESUMO

Rare diseases are characterized by low prevalence and are often chronically debilitating or life-threatening. Imaging phenotype classification of rare diseases is challenging due to the severe shortage of training examples. Few-shot learning (FSL) methods tackle this challenge by extracting generalizable prior knowledge from a large base dataset of common diseases and normal controls and transferring the knowledge to rare diseases. Yet, most existing methods require the base dataset to be labeled and do not make full use of the precious examples of rare diseases. In addition, the extremely small size of the training samples may result in inter-class performance imbalance due to insufficient sampling of the true distributions. To this end, we propose in this work a novel hybrid approach to rare disease imaging phenotype classification, featuring three key novelties targeted at the above drawbacks. First, we adopt the unsupervised representation learning (URL) based on self-supervising contrastive loss, whereby to eliminate the overhead in labeling the base dataset. Second, we integrate the URL with pseudo-label supervised classification for effective self-distillation of the knowledge about the rare diseases, composing a hybrid approach taking advantage of both unsupervised and (pseudo-) supervised learning on the base dataset. Third, we use the feature dispersion to assess the intra-class diversity of training samples, to alleviate the inter-class performance imbalance via dispersion-aware correction. Experimental results of imaging phenotype classification of both simulated (skin lesions and cervical smears) and real clinical rare diseases (retinal diseases) show that our hybrid approach substantially outperforms existing FSL methods (including those using a fully supervised base dataset) via effective integration of the URL, pseudo-label driven self-distillation, and dispersion-aware imbalance correction, thus establishing a new state of the art.


Assuntos
Doenças Raras , Doenças Retinianas , Humanos , Fenótipo , Diagnóstico por Imagem
2.
Med Image Anal ; 94: 103151, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527405

RESUMO

Self-supervised learning has emerged as a powerful tool for pretraining deep networks on unlabeled data, prior to transfer learning of target tasks with limited annotation. The relevance between the pretraining pretext and target tasks is crucial to the success of transfer learning. Various pretext tasks have been proposed to utilize properties of medical image data (e.g., three dimensionality), which are more relevant to medical image analysis than generic ones for natural images. However, previous work rarely paid attention to data with anatomy-oriented imaging planes, e.g., standard cardiac magnetic resonance imaging views. As these imaging planes are defined according to the anatomy of the imaged organ, pretext tasks effectively exploiting this information can pretrain the networks to gain knowledge on the organ of interest. In this work, we propose two complementary pretext tasks for this group of medical image data based on the spatial relationship of the imaging planes. The first is to learn the relative orientation between the imaging planes and implemented as regressing their intersecting lines. The second exploits parallel imaging planes to regress their relative slice locations within a stack. Both pretext tasks are conceptually straightforward and easy to implement, and can be combined in multitask learning for better representation learning. Thorough experiments on two anatomical structures (heart and knee) and representative target tasks (semantic segmentation and classification) demonstrate that the proposed pretext tasks are effective in pretraining deep networks for remarkably boosted performance on the target tasks, and superior to other recent approaches.


Assuntos
Coração , Articulação do Joelho , Humanos , Coração/diagnóstico por imagem , Semântica , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador
3.
Med Image Anal ; 93: 103095, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310678

RESUMO

Segmenting prostate from magnetic resonance imaging (MRI) is a critical procedure in prostate cancer staging and treatment planning. Considering the nature of labeled data scarcity for medical images, semi-supervised learning (SSL) becomes an appealing solution since it can simultaneously exploit limited labeled data and a large amount of unlabeled data. However, SSL relies on the assumption that the unlabeled images are abundant, which may not be satisfied when the local institute has limited image collection capabilities. An intuitive solution is to seek support from other centers to enrich the unlabeled image pool. However, this further introduces data heterogeneity, which can impede SSL that works under identical data distribution with certain model assumptions. Aiming at this under-explored yet valuable scenario, in this work, we propose a separated collaborative learning (SCL) framework for semi-supervised prostate segmentation with multi-site unlabeled MRI data. Specifically, on top of the teacher-student framework, SCL exploits multi-site unlabeled data by: (i) Local learning, which advocates local distribution fitting, including the pseudo label learning that reinforces confirmation of low-entropy easy regions and the cyclic propagated real label learning that leverages class prototypes to regularize the distribution of intra-class features; (ii) External multi-site learning, which aims to robustly mine informative clues from external data, mainly including the local-support category mutual dependence learning, which takes the spirit that mutual information can effectively measure the amount of information shared by two variables even from different domains, and the stability learning under strong adversarial perturbations to enhance robustness to heterogeneity. Extensive experiments on prostate MRI data from six different clinical centers show that our method can effectively generalize SSL on multi-site unlabeled data and significantly outperform other semi-supervised segmentation methods. Besides, we validate the extensibility of our method on the multi-class cardiac MRI segmentation task with data from four different clinical centers.


Assuntos
Práticas Interdisciplinares , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Entropia , Imageamento por Ressonância Magnética
4.
IEEE Trans Med Imaging ; PP2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861433

RESUMO

Few-shot medical image segmentation has achieved great progress in improving accuracy and efficiency of medical analysis in the biomedical imaging field. However, most existing methods cannot explore inter-class relations among base and novel medical classes to reason unseen novel classes. Moreover, the same kind of medical class has large intra-class variations brought by diverse appearances, shapes and scales, thus causing ambiguous visual characterization to degrade generalization performance of these existing methods on unseen novel classes. To address the above challenges, in this paper, we propose a Prototype correlation Matching and Class-relation Reasoning (i.e., PMCR) model. The proposed model can effectively mitigate false pixel correlation matches caused by large intra-class variations while reasoning inter-class relations among different medical classes. Specifically, in order to address false pixel correlation match brought by large intra-class variations, we propose a prototype correlation matching module to mine representative prototypes that can characterize diverse visual information of different appearances well. We aim to explore prototypelevel rather than pixel-level correlation matching between support and query features via optimal transport algorithm to tackle false matches caused by intra-class variations. Meanwhile, in order to explore inter-class relations, we design a class-relation reasoning module to segment unseen novel medical objects via reasoning inter-class relations between base and novel classes. Such inter-class relations can be well propagated to semantic encoding of local query features to improve few-shot segmentation performance. Quantitative comparisons illustrates the large performance improvement of our model over other baseline methods.

5.
Med Image Anal ; 91: 103019, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944431

RESUMO

Layer segmentation is important to quantitative analysis of retinal optical coherence tomography (OCT). Recently, deep learning based methods have been developed to automate this task and yield remarkable performance. However, due to the large spatial gap and potential mismatch between the B-scans of an OCT volume, all of them were based on 2D segmentation of individual B-scans, which may lose the continuity and diagnostic information of the retinal layers in 3D space. Besides, most of these methods required dense annotation of the OCT volumes, which is labor-intensive and expertise-demanding. This work presents a novel framework based on hybrid 2D-3D convolutional neural networks (CNNs) to obtain continuous 3D retinal layer surfaces from OCT volumes, which works well with both full and sparse annotations. The 2D features of individual B-scans are extracted by an encoder consisting of 2D convolutions. These 2D features are then used to produce the alignment displacement vectors and layer segmentation by two 3D decoders coupled via a spatial transformer module. Two losses are proposed to utilize the retinal layers' natural property of being smooth for B-scan alignment and layer segmentation, respectively, and are the key to the semi-supervised learning with sparse annotation. The entire framework is trained end-to-end. To the best of our knowledge, this is the first work that attempts 3D retinal layer segmentation in volumetric OCT images based on CNNs. Experiments on a synthetic dataset and three public clinical datasets show that our framework can effectively align the B-scans for potential motion correction, and achieves superior performance to state-of-the-art 2D deep learning methods in terms of both layer segmentation accuracy and cross-B-scan 3D continuity in both fully and semi-supervised settings, thus offering more clinical values than previous works.


Assuntos
Retina , Tomografia de Coerência Óptica , Humanos , Retina/diagnóstico por imagem , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado
6.
Artigo em Inglês | MEDLINE | ID: mdl-38905097

RESUMO

The detection head constitutes a pivotal component within object detectors, tasked with executing both classification and localization functions. Regrettably, the commonly used parallel head often lacks omni perceptual capabilities, such as deformation perception (DP), global perception (GP), and cross-task perception (CTP). Despite numerous methods attempting to enhance these abilities from a single aspect, achieving a comprehensive and unified solution remains a significant challenge. In response to this challenge, we develop an innovative detection head, termed UniHead, to unify three perceptual abilities simultaneously. More precisely, our approach: 1) introduces DP, enabling the model to adaptively sample object features; 2) proposes a dual-axial aggregation transformer (DAT) to adeptly model long-range dependencies, thereby achieving GP; and 3) devises a cross-task interaction transformer (CIT) that facilitates interaction between the classification and localization branches, thus aligning the two tasks. As a plug-and-play method, the proposed UniHead can be conveniently integrated with existing detectors. Extensive experiments on the COCO dataset demonstrate that our UniHead can bring significant improvements to many detectors. For instance, the UniHead can obtain + 2.7 AP gains in RetinaNet, + 2.9 AP gains in FreeAnchor, and + 2.1 AP gains in GFL. The code is available at https://github.com/zht8506/UniHead.

7.
IEEE Trans Med Imaging ; PP2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949933

RESUMO

Radiology report generation (RRG) is crucial to save the valuable time of radiologists in drafting the report, therefore increasing their work efficiency. Compared to typical methods that directly transfer image captioning technologies to RRG, our approach incorporates organ-wise priors into the report generation. Specifically, in this paper, we propose Organ-aware Diagnosis (OaD) to generate diagnostic reports containing descriptions of each physiological organ. During training, we first develop a task distillation (TD) module to extract organ-level descriptions from reports. We then introduce an organ-aware report generation module that, for one thing, provides a specific description for each organ, and for another, simulates clinical situations to provide short descriptions for normal cases. Furthermore, we design an auto-balance mask loss to ensure balanced training for normal/abnormal descriptions and various organs simultaneously. Being intuitively reasonable and practically simple, our OaD outperforms SOTA alternatives by large margins on commonly used IU-Xray and MIMIC-CXR datasets, as evidenced by a 3.4% BLEU-1 improvement on MIMIC-CXR and 2.0% BLEU-2 improvement on IU-Xray.

8.
IEEE Trans Cybern ; PP2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728131

RESUMO

Radiation therapy treatment planning requires balancing the delivery of the target dose while sparing normal tissues, making it a complex process. To streamline the planning process and enhance its quality, there is a growing demand for knowledge-based planning (KBP). Ensemble learning has shown impressive power in various deep learning tasks, and it has great potential to improve the performance of KBP. However, the effectiveness of ensemble learning heavily depends on the diversity and individual accuracy of the base learners. Moreover, the complexity of model ensembles is a major concern, as it requires maintaining multiple models during inference, leading to increased computational cost and storage overhead. In this study, we propose a novel learning-based ensemble approach named LENAS, which integrates neural architecture search with knowledge distillation for 3-D radiotherapy dose prediction. Our approach starts by exhaustively searching each block from an enormous architecture space to identify multiple architectures that exhibit promising performance and significant diversity. To mitigate the complexity introduced by the model ensemble, we adopt the teacher-student paradigm, leveraging the diverse outputs from multiple learned networks as supervisory signals to guide the training of the student network. Furthermore, to preserve high-level semantic information, we design a hybrid loss to optimize the student network, enabling it to recover the knowledge embedded within the teacher networks. The proposed method has been evaluated on two public datasets: 1) OpenKBP and 2) AIMIS. Extensive experimental results demonstrate the effectiveness of our method and its superior performance to the state-of-the-art methods. Code: github.com/hust-linyi/LENAS.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38294925

RESUMO

Federated learning enables multiple hospitals to cooperatively learn a shared model without privacy disclosure. Existing methods often take a common assumption that the data from different hospitals have the same modalities. However, such a setting is difficult to fully satisfy in practical applications, since the imaging guidelines may be different between hospitals, which makes the number of individuals with the same set of modalities limited. To this end, we formulate this practical-yet-challenging cross-modal vertical federated learning task, in which data from multiple hospitals have different modalities with a small amount of multi-modality data collected from the same individuals. To tackle such a situation, we develop a novel framework, namely Federated Consistent Regularization constrained Feature Disentanglement (Fed-CRFD), for boosting MRI reconstruction by effectively exploring the overlapping samples (i.e., same patients with different modalities at different hospitals) and solving the domain shift problem caused by different modalities. Particularly, our Fed-CRFD involves an intra-client feature disentangle scheme to decouple data into modality-invariant and modality-specific features, where the modality-invariant features are leveraged to mitigate the domain shift problem. In addition, a cross-client latent representation consistency constraint is proposed specifically for the overlapping samples to further align the modality-invariant features extracted from different modalities. Hence, our method can fully exploit the multi-source data from hospitals while alleviating the domain shift problem. Extensive experiments on two typical MRI datasets demonstrate that our network clearly outperforms state-of-the-art MRI reconstruction methods. The source code is available at https://github.com/IAMJackYan/FedCRFD.

10.
Artif Intell Med ; 149: 102801, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462290

RESUMO

Since different disease grades require different treatments from physicians, i.e., the low-grade patients may recover with follow-up observations whereas the high-grade may need immediate surgery, the accuracy of disease grading is pivotal in clinical practice. In this paper, we propose a Triplet-Branch Network with ContRastive priOr-knoWledge embeddiNg (TBN-CROWN) for the accurate disease grading, which enables physicians to accordingly take appropriate treatments. Specifically, our TBN-CROWN has three branches, which are implemented for representation learning, classifier learning and grade-related prior-knowledge learning, respectively. The former two branches deal with the issue of class-imbalanced training samples, while the latter one embeds the grade-related prior-knowledge via a novel auxiliary module, termed contrastive embedding module. The proposed auxiliary module takes the features embedded by different branches as input, and accordingly constructs positive and negative embeddings for the model to deploy grade-related prior-knowledge via contrastive learning. Extensive experiments on our private and two publicly available disease grading datasets show that our TBN-CROWN can effectively tackle the class-imbalance problem and yield a satisfactory grading accuracy for various diseases, such as fatigue fracture, ulcerative colitis, and diabetic retinopathy.


Assuntos
Retinopatia Diabética , Médicos , Humanos , Aprendizagem
11.
J Am Med Inform Assoc ; 31(9): 2054-2064, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38684792

RESUMO

OBJECTIVES: Large Language Models (LLMs) such as ChatGPT and Med-PaLM have excelled in various medical question-answering tasks. However, these English-centric models encounter challenges in non-English clinical settings, primarily due to limited clinical knowledge in respective languages, a consequence of imbalanced training corpora. We systematically evaluate LLMs in the Chinese medical context and develop a novel in-context learning framework to enhance their performance. MATERIALS AND METHODS: The latest China National Medical Licensing Examination (CNMLE-2022) served as the benchmark. We collected 53 medical books and 381 149 medical questions to construct the medical knowledge base and question bank. The proposed Knowledge and Few-shot Enhancement In-context Learning (KFE) framework leverages the in-context learning ability of LLMs to integrate diverse external clinical knowledge sources. We evaluated KFE with ChatGPT (GPT-3.5), GPT-4, Baichuan2-7B, Baichuan2-13B, and QWEN-72B in CNMLE-2022 and further investigated the effectiveness of different pathways for incorporating LLMs with medical knowledge from 7 distinct perspectives. RESULTS: Directly applying ChatGPT failed to qualify for the CNMLE-2022 at a score of 51. Cooperated with the KFE framework, the LLMs with varying sizes yielded consistent and significant improvements. The ChatGPT's performance surged to 70.04 and GPT-4 achieved the highest score of 82.59. This surpasses the qualification threshold (60) and exceeds the average human score of 68.70, affirming the effectiveness and robustness of the framework. It also enabled a smaller Baichuan2-13B to pass the examination, showcasing the great potential in low-resource settings. DISCUSSION AND CONCLUSION: This study shed light on the optimal practices to enhance the capabilities of LLMs in non-English medical scenarios. By synergizing medical knowledge through in-context learning, LLMs can extend clinical insight beyond language barriers in healthcare, significantly reducing language-related disparities of LLM applications and ensuring global benefit in this field.


Assuntos
Bases de Conhecimento , Idioma , Humanos , China , Licenciamento em Medicina , Processamento de Linguagem Natural
12.
Nat Comput Sci ; 3(12): 1023-1033, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38177736

RESUMO

Drug-drug interactions (DDIs) for emerging drugs offer possibilities for treating and alleviating diseases, and accurately predicting these with computational methods can improve patient care and contribute to efficient drug development. However, many existing computational methods require large amounts of known DDI information, which is scarce for emerging drugs. Here we propose EmerGNN, a graph neural network that can effectively predict interactions for emerging drugs by leveraging the rich information in biomedical networks. EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths. The edges of the biomedical network are weighted to indicate the relevance for the target DDI prediction. Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.


Assuntos
Desenvolvimento de Medicamentos , Redes Neurais de Computação , Humanos , Interações Medicamentosas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA