Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mediators Inflamm ; 2020: 5867627, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32831636

RESUMO

Inflammatory bowel disease, a gut disease that is prevalent worldwide, is characterized by chronic intestinal inflammation, such as colitis, and disorder of the gut microbiome. Glycine (Gly) is the simplest amino acid and functions as an anti-inflammatory immune-nutrient and intestinal microbiota regulator. This study aimed at investigating the effect of Gly on colitis induced in mice by intrarectal administration of 5% acetic acid (AA). Bodyweight and survival rates were monitored, and colonic length and weight, serum amino acid concentrations, intestinal inflammation-related gene expression, and colonic microbiota abundances were analyzed. The results showed that Gly dietary supplementation had no effect on the survival rate or the ratio of colonic length to weight. However, Gly supplementation reversed the AA-induced increase in serum concentrations of amino acids such as glutamate, leucine, isoleucine, and valine. Furthermore, Gly inhibited colonic gene expression of interleukin- (IL-) 1ß and promoted IL-10 expression in colitis mice. Gly supplementation also reversed the AA-induced reduction in the abundance of bacteria such as Clostridia, Ruminococcaceae, and Clostridiales. This change in the intestinal microbiota was possibly attributable to the changes in colonic IL-10 expression and serum concentrations of valine and leucine. In sum, Gly supplementation regulated the serum concentrations of amino acids, the levels of colonic immune-associated gene expression, and the intestinal microbiota in a mouse model of colitis. These findings enhance our understanding of the role of Gly in regulating metabolism, intestinal immunity, and the gut microbiota in animals afflicted with colitis.


Assuntos
Ácido Acético/toxicidade , Colite/induzido quimicamente , Colite/tratamento farmacológico , Glicina/uso terapêutico , Interleucina-10/metabolismo , Animais , Clostridiales/efeitos dos fármacos , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Camundongos
2.
Neoplasia ; 54: 101013, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850835

RESUMO

In invasive lung adenocarcinoma (LUAD), patients with micropapillary (MIP) or solid (SOL) components had a significantly poorer prognosis than those with only lepidic (LEP), acinar (ACI) or papillary (PAP) components. It is interesting to explore the genetic features of different histologic subtypes, especially the highly aggressive components. Based on a cohort of 5,933 patients, this study observed that in different tumor size groups, LUAD with MIP/SOL components showed a different prevalence, and patients with ALK alteration or TP53 mutations had a higher probability of developing MIP/SOL components. To control individual differences, this research used spatial whole-exome sequencing (WES) via laser-capture microdissection of five patients harboring these five coexistent components and identified genetic features among different histologic components of the same tumor. In tracing the evolution of components, we found that titin (TTN) mutation might serve as a crucial intratumor potential driver for MIP/SOL components, which was validated by a cohort of 146 LUAD patients undergoing bulk WES. Functional analysis revealed that TTN mutations enriched the complement and coagulation cascades, which correlated with the pathway of cell adhesion, migration, and proliferation. Collectively, the histologic subtypes of invasive LUAD were genetically different, and certain trunk genotypes might synergize with branching TTN mutation to develop highly aggressive components.


Assuntos
Adenocarcinoma de Pulmão , Sequenciamento do Exoma , Neoplasias Pulmonares , Mutação , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Biomarcadores Tumorais/genética , Masculino , Feminino , Conectina/genética , Prognóstico , Pessoa de Meia-Idade
3.
Anim Nutr ; 6(4): 404-409, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33364456

RESUMO

Polyphenols are a class of non-essential phytonutrients, which are abundant in fruits and vegetables. Dietary polyphenols or foods rich in polyphenols are widely recommended for metabolic health. Indeed, polyphenols (i.e., catechins, resveratrol, and curcumin) are increasingly recognized as a regulator of lipid metabolism in host. The mechanisms, at least in part, may be highly associated with gut microbiome. This review mainly discussed the beneficial effects of dietary polyphenols on lipid metabolism. The potential mechanisms of gut microbiome are focused on the effect of dietary polyphenols on gut microbiota compositions and how gut microbiota affect polyphenol metabolism. Together, dietary polyphenols may be a useful nutritional strategy for manipulation of lipid metabolism or obesity care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA