RESUMO
In this study, a series of novel 2H-imidazo [1, 2-c] pyrazolo [3, 4-e] pyrimidine derivatives were designed, synthesized, and evaluated for their cytotoxic activities. The in vitro cell growth inhibition assay of the target compounds indicated their selectivity in inhibiting the proliferation of blood tumor cells (K562, U937) and solid tumor cells (HCT116, HT-29). Compound 9b exhibited the highest antiproliferative activities against K562 (IC50 = 5.597 µM) and U937 (IC50 = 3.512 µM). Based on the flow cytometry assays, compound 9b caused obvious induction of cell apoptosis and cell arrest at the S phase. Furthermore, western blot analysis revealed that compound 9b upregulated the expression of Bax, downregulated the levels of Bcl-2, and further activated caspase-3 in K562 cells. Therefore, compound 9b may be a potential anticancer agent that deserves further investigation.
Assuntos
Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Pirimidinas/síntese química , Pirimidinas/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Células K562 , Pirimidinas/química , Células U937RESUMO
The epidermal growth factor receptor (EGFR) and HER2 are two important tyrosine kinases that play crucial roles in signal transduction pathways that regulate numerous cellular functions including proliferation, differentiation, migration, and angiogenesis. In the past 20 years, many proteomic methods have emerged as powerful methods to evaluate proteins in biological processes and human disease states. Among them, activity-based protein profiling (ABPP) is one useful approach for the functional analysis of proteins. In this study, a novel photoaffinity probe 11 was designed and synthesised to assess the target profiling of the reactive group in the photoaffinity probe 11. Biological evaluation was performed, and the results showed that the novel photoaffinity probe binds to EGFR and HER2 proteins and it hits targets by the reactive group.
Assuntos
Desenho de Fármacos , Receptores ErbB/química , Marcadores de Fotoafinidade/química , Quinazolinas/química , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Marcadores de Fotoafinidade/síntese química , Quinazolinas/síntese química , Relação Estrutura-AtividadeRESUMO
Calixarenes, with potential functionalization on the upper and lower rim, have been explored in recent years for the design and construction of anticancer agents in the field of drugs and pharmaceuticals. Herein, optimization of bis [N-(2-hydroxyethyl) aminocarbonylmethoxyl substituted calix [4] arene (CLX-4) using structure-based drug design and traditional medicinal chemistry led to the discovery of series of calix [4]arene carbonyl amide derivatives 5a-5t. Evaluation of the cytotoxicity of 5a-5t employing MTT assay in MCF-7, MDA-MB-231 (human breast cancer cells), HT29 (human colon carcinoma cells), HepG2 (human hepatocellular carcinoma cells), A549 (human lung adenocarcinoma cells) and HUVEC (Human Umbilical Vein Endothelial) cells demonstrated that the most promising compound 5h displayed the most superior inhibitory effect against A549 and MDA-MB-231 cells, which were 3.2 times and 6.8 times of CLX-4, respectively. In addition, the cell inhibition rate (at 10 µM) against normal HUVEC cells in vitro was only 9.6%, indicating the safty of compound 5h. Moreover, compound 5h could inhibit the migration of MDA-MB-231 cell in wound healing assay. Further mechanism studies significantly indicated that compound 5h could block MDA-MB-231 cell cycle arrest in G0/G1 phase by down regulating cyclin D1 and CDK4, and induce apoptosis by up-regulation of Bax, down-regulation of Caspase-3, PARP and Bcl-2 proteins, resulting in the reduction of DNA synthesis and cell division arrest. This work provides worthy of further exploration for the promising calixarene-based anticancer drugs.
Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Calixarenos/farmacologia , Desenho de Fármacos , Fenóis/farmacologia , Amidas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Calixarenos/síntese química , Calixarenos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Fenóis/síntese química , Fenóis/química , Relação Estrutura-Atividade , Cicatrização/efeitos dos fármacosRESUMO
In this study, a series of 3-(4-phenyl-1H-imidazol-2-yl)-1H-pyrazole derivatives were designed, synthesized, and evaluated for their biological activities. Upon performing kinase assays, most of the compounds exhibited potent inhibition against JAK2/3 and Aurora A/B with the IC50 values ranging from 0.008 to 2.52 µM. Among these derivatives, compound 10e expressed the most moderate inhibiting activities against all the four kinases with the IC50 values of 0.166 µM (JAK2), 0.057 µM (JAK3), 0.939 µM (Aurora A), and 0.583 µM (Aurora B), respectively. Moreover, most of the derived compounds exhibited potent cytotoxicity against human chronic myeloid leukemia cells K562 and human colon cancer cells HCT116, while compound 10e expressed antiproliferative activities against K562 (IC50=6.726 µM). According to western blot analysis, compound 10e down-regulated the phosphorylation of STAT3, STAT5, Aurora A, and Aurora B in a dose-dependent manner in K562 and HCT116 cells. Cell cycle analysis revealed that compound 10e inhibited the proliferation of cells by inducing cell cycle arrest in the G2 phase. The molecular modeling suggested that compound 10e could maintain a binding mode similar to the binding mode of AT9832, a common JAK 2/3 and Aurora A/B kinases multi-target kinase inhibitor. Therefore, compound 10e might be a potential agent for cancer therapy deserving further research.
Assuntos
Antineoplásicos/síntese química , Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 3/metabolismo , Inibidores de Proteínas Quinases/síntese química , Pirazóis/síntese química , Amidas/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/químicaRESUMO
In this study, a series of 4-aniline quinazoline derivatives bearing hydrogen sulfide (H2S) donors were designed, synthesized and evaluated for biological activities. The synthesized compounds were screened for the enzymatic activities against EGFR and EGFR mutants by kinase target-based cell screening method. The results demonstrate that most compounds exhibit selectively inhibitory activities against TEL-EGFR-L858R-BaF3, especially compound 9h with GI50 = 0.008 µM (TEL-EGFR-L858R-BaF3), 0.0069 µM (TEL-EGFR-C797S-BaF3), >10 µM (BaF3), >10 µM (TEL-EGFR-BaF3) and 6.03 µM (TEL-EGFR-T790M-L858R-BaF3). The results from anti-proliferative assays in two NSCLC cell lines indicate that synthetic derivatives (9g, 9h, 15e and 15f) with H2S donor ACS81 display greater anti-proliferative potency against NSCLC cell line H3255 bearing EGFR mutant (L858R) with GI50 values ranging from 0.3486 to 1.348 µM. In addition, compound 9h exhibits weak anti-proliferative effects on other tumor cells (HepG2, MCF-7, HT-29 and A431) and has lower toxic effect on HUVEC cells than AZD9291 (positive control). Meanwhile, compound 9h inhibits the phosphorylation of EGFR in H3255 cells in a dose-dependent manner. Cell cycle analysis reveals that compound 9h suppresses the proliferation of cells by inducing cell cycle arrest in G0-G1 phase. The result of H2S release evaluation suggests that the H2S release of compound 9h is significantly more and faster than other compounds.
Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Sulfeto de Hidrogênio/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Compostos de Anilina/síntese química , Compostos de Anilina/química , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Sulfeto de Hidrogênio/química , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-AtividadeRESUMO
Based on the superior prospects of calixarenes-based agents and N-heterocyclic pharmacophores in biomedical applications, 14 new dihomooxacalix[4]arene N-heterocyclic (pyridine, quinoline, and thiazole) derivatives 4a-4n were efficiently synthesized from the parent compound, namely, p-tert-butyldihomooxacalix[4]arene 1; they were further investigated by using their IR, 1H NMR, 13C NMR, and HRMS spectra. Among these derivatives, the crystal and molecular structures of 2-aminomethyl-pyridine-substituted dihomooxacalix[4]arene 4f (obtained from methanol) have been determined by X-ray diffraction. In the case of the inhibition assay of cell growth, we evaluated the effects on four select tumor cell lines (MCF-7, HepG2, SKOV3, and HeLa), as well as the normal cell lines of HUVEC, using paclitaxel as the positive control drug. It was found that the derivatives 4d-4f, 4i, 4k, and 4l could inhibit tumoral activity up to varying degrees. Mechanistically, the cell cycle analysis demonstrated that dihomooxacalix[4]arene N-heterocyclic derivatives could induce apoptosis of MCF cells. In addition, the results of the western blot and immunofluorescence studies revealed the upregulation of the protein expression levels of Bax and cleaved caspase-3, as well as the downregulation of Bcl-2, which are in good agreement with the corresponding inhibitory potencies. Therefore, these findings suggest that N-heterocyclic derivatives based on the dihomooxacalix[4]arene scaffold are promising candidates for use against cancer.
RESUMO
This paper reports a novel synthesis of gefitinib starting from methyl 3-hydroxy-4-methoxybenzoate. The process starts with alkylation of the starting material, followed by nitration, reduction, cyclization, chlorination and two successive amination reactions. The intermediates and target molecule were characterized by 1H-NMR, 13C-NMR, MS and the purities of all these compounds were determined by HPLC. This novel synthetic route produced overall yields as high as 37.4%.
Assuntos
Hidroxibenzoatos/química , Quinazolinas/síntese química , Antineoplásicos/síntese química , Antineoplásicos/química , Gefitinibe , Quinazolinas/químicaRESUMO
In this study, a series of 4-anilinoquinazoline derivatives bearing amino acid moiety were designed, synthesized and evaluated for biological activities. The synthesized compounds were screened for anticancer activity against human hepatocellular carcinoma cell HepG2 using SRB assay. In vitro cell growth inhibition assays indicated that compound 6m exhibited moderate inhibitory activities only against human hepatocellular carcinoma cells HepG2 with IC50 of 8.3 µM. Synthetic derivatives showed excellent selectivity, such as compound 6m demonstrated a strong inhibition of EGFR (IC50 = 0.0032 µM), with selectivity of over 2000-fold over other kinases. Apoptosis analysis revealed that compound 6m caused obvious induction of cell apoptosis. 6m significantly down-regulated the expression of Bcl-2 and up-regulated the expression of Bax, decreased mitochondrial membrane potential (ΔΨm), promoted the mitochondrial cytochrome c release into the cytoplasm, activated caspase-3, and finally induced apoptosis of HepG2 cells. Molecular docking indicated that compound 6m could bind well with EGFR. Therefore, compound 6m may be a potential agent for cancer therapy deserving further research.
Assuntos
Aminoácidos/química , Antineoplásicos/química , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Quinazolinas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/químicaRESUMO
Calixarene-based compounds are highly effective therapeutic agents against cancer. This study aims to prepare a series of calix [n]arene (n = 4, 6, 8) polyhydroxyamine derivatives (3a-3m) and to study their potential antitumor activities. The single crystal structure of calixs[4]arene derivative 3a was determined through X-ray diffraction. We assessed the ability of the prepared calix [n]arene polyhydroxyamine derivatives to induce cytotoxicity in six cancer cell lines by performing cancer cell growth inhibition assays. Results demonstrated that compounds 3a-3d achieved IC50 values ranging from 1.6 µM to 11.3 µM. Among the different compounds, 3a and 3b exerted the strongest cytotoxic effect in inhibiting the growth of SKOV3 cells. In relation to the underlying mechanisms of cytotoxic effects, cell cycle analysis revealed that the exposure of SKOV3 cells to 3a induced cell cycle arrest in the G0/G1 phase, suggesting a reduction in DNA synthesis. Immunofluorescent staining indicated that the protein expression levels of caspase-3 and p53 in cells significantly increased, whereas that of Bcl-2 was effectively suppressed. Meanwhile, no significant changes in Bax were observed in SKOV3 cells. These results highlight that calixarene 3a can be further studied as a potential anticancer agent.
Assuntos
Antineoplásicos/química , Calixarenos/química , Animais , Antineoplásicos/farmacologia , Calixarenos/síntese química , Calixarenos/farmacologia , Caspase 3/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cristalografia por Raios X , Citostáticos/síntese química , Citostáticos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/efeitos dos fármacosRESUMO
OBJECTIVE: MiRNAs play crucial roles in progression of cancer. However, the underlying mechanisms of miRNAs in non small cell lung cancer are still poorly understood. The aim of this study was to investigate the expression level of microRNA-126 (miR-126) and microRNA-133b (miR-133b) and also their association with clinicopathological features in patients with non small cell lung cancer (NSCLC). METHODS: Total RNA was purified from NSCLC tissues and adjacent non-tumor tissues and then quantitative real-time PCR (qRT-PCR) was used to evaluate the expression rate of microRNAs. Furthermore, the association of miR-126 and miR-133b level with clinicopathological features and prognosis were evaluated. RESULTS: Our findings showed that expression of miR-126 was decreased in NSCLC tissues compared with adjacent non-tumor tissues. On the other hand, a lower expression of miR-133b was seen in NSCLC tissues when compared with adjacent non-tumor tissues. In term of miR-126, our results showed that miR-126 was associated with tumor stage and lymph nodes metastasis (P<0.05). In term of miR-133b, our finding indicated that decreased expression of miR-133b was correlated with advanced tumor stage and lymph nodes metastasis (P<0.05). Kaplan-Meier analysis and log-rank test indicated that patients with low expression of miR-126 and miR-133b had a shorter overall survival (log-rank test; P<0.05). Multivariate Cox proportional hazards model revealed that low expression of miR-126 and miR-133b, advanced tumor stage and lymph nodes metastasis were independent prognostic factors for overall survival of NSCLC patients. CONCLUSIONS: These findings suggested that miR-126 and miR-133b might play a key role in the progression and metastasis of NSCLC and would be applied as a novel therapeutic agent.