RESUMO
Despite recent notable advancements in highlight image restoration techniques, the dearth of annotated data and the lightweight deployment of highlight removal networks pose significant impediments to further advancements in the field. In this paper, to the best of our knowledge, we first propose a semi-supervised learning paradigm for highlight removal, merging the fusion version of a teacher-student model and a generative adversarial network, featuring a lightweight network architecture. Initially, we establish a dependable repository to house optimal predictions as pseudo ground truth through empirical analyses guided by the most reliable No-Reference Image Quality Assessment (NR-IQA) method. This method serves to assess rigorously the quality of model predictions. Subsequently, addressing concerns regarding confirmation bias, we integrate contrastive regularization into the framework to curtail the risk of overfitting on inaccurate labels. Finally, we introduce a comprehensive feature aggregation module and an extensive attention mechanism within the generative network, considering a balance between network performance and computational efficiency. Our experimental evaluations encompass comprehensive assessments on both full-reference and non-reference highlight benchmarks. The results demonstrate conclusively the substantive quantitative and qualitative enhancements achieved by our proposed algorithm in comparison to state-of-the-art methodologies.
RESUMO
Specular highlight removal ensures the acquisition of high-quality images, which finds its important applications in stereo matching, text recognition and image segmentation. In order to prevent the leakage of images containing personal information, such as identification card (ID) photos, clients often train specular highlight removal models using local data resulting in a lack of precision and generalization of the trained model. To address this challenge, this paper introduces a new method to remove highlight in images using federated learning (FL) and attention generative adversarial network (AttGAN). Specifically, the former builds a global model in the central server and updates the global model by aggregating model parameters of clients. This process does not involve the transmission of image data, which enhances the privacy of clients; the later combining attention mechanisms and generative adversarial network aims to improve the quality of highlight removal by focusing on key image regions, resulting in more realistic and visually pleasing results. The proposed FL-AttGAN method is numerically evaluated, using SD1, SD2 amd RD datasets. The results show that the proposed FL-AttGAN outperforms existent methods.
RESUMO
To study the penetration and cratering effect of reactive material composite jets, a series of experiments are carried out for the shaped charge (SC) with different composite liners damaging steel targets. The inner layer of composite liners is metal and the outer one is a polytetrafluoroethylene/aluminum (PTFE/Al) reactive material. Copper (Cu), titanium (Ti) and Al inner liners are used in this paper. The reactive material liner is composed of 73.5 wt.% PTFE and 26.5 wt.% Al powder through mass-matched ratios. Reactive material composite liners are prepared through machining, cold pressing and a sintering process. The SC mainly consists of a case, a composite liner, high-energy explosive and an initiator. The steel target is steel 45#, with a thickness of 66 mm. A standoff of 1.0 CD (charge diameter) is selected to conduct the penetration experiments. The experimental results show that when the inner layer of the composite liner is composed of Ti and Al, the hole diameters on the steel target formed by the reactive material composite jet are significantly larger than that of the inner Cu liner. By introducing the initiation delay time (τ) and detonation-like reaction model of PTFE/Al reactive materials, an integrated numerical simulation algorithm of the penetration and detonation-like effects of reactive material composite jets is realized. Numerical simulations demonstrate that the initial penetration holes on the steel targets are enlarged under the detonation-like effects of PTFE/Al reactive materials, and the simulated perforation sizes are in good agreement with the experimental results.
RESUMO
The high-pressure-related problems of materials constitute a field at the confluence of several scientific disciplines [...].
RESUMO
To reveal the expansion phenomenon and reaction characteristics of an aluminum particle filled polytetrafluoroethylene (PTFE/Al) reactive jet during the forming process, and to control the penetration and explosion coupling damage ability of the reactive jet, the temperature and density distribution of the reactive jet were investigated by combining numerical simulation and experimental study. Based on the platform of AUTODYN-3D code, the Smoothed Particle Hydrodynamics (SPH) algorithm was used to study the evolution behaviors and distribution regularity of the morphology, density, temperature, and velocity field during the formation process of the reactive composite jet. The reaction characteristic in the forming process was revealed by combining the distribution of the high-temperature zone in numerical simulation and the Differential Scanning Calorimeter/Thermo-Gravimetry (DSC/TG) experiment results. The results show that the distribution of the high-temperature zone of the reactive composite jet is mainly concentrated in the jet tip and the axial direction, and the reactive composite jet tip reacts first. Combining the density distribution in the numerical simulation and the pulsed X-ray experimental results, the forming behavior of the reactive composite jet was analyzed. The results show that the reactive composite jet has an obvious expansion effect, accompanied by a significant decrease in the overall density.
RESUMO
The formation behavior of coated reactive explosively formed projectiles (EFP) is studied by the combination of experiments and simulations. The results show that the coated EFP can be obtained by explosively crushing the double-layer liners, and the simulation agrees with the experiment well. Then, the interaction process between the two liners is discussed in detail, and the formation and coating mechanism are revealed. It can be found that there are three phases in the formation process, including the impact, closing and stretching phases. During the impact phase, the velocities of two liners rise in turns with the kinetic energy exchange. In the closing phase, the copper liner is collapsed forward to the axis and completely coats the reactive liner. It is mentioned that the edge of the copper liner begins to form a metal precursor penetrator in this stage. During the stretching phase, the coated reactive EFP is further stretched and fractured, resulting in the separation of the metal precursor penetrator and the following coated reactive projectile. Further studies show both the edge thickness and the curvature radius of the copper liner have significant influences on formation behaviors. By decreasing the edge thickness or the curvature radius, the difficulty of closing decreases, but the tip velocity and the length of precursor penetrator increases. As the thickness and diameter of the reactive liner decrease, the coating velocity increases slightly, but the total length of coated reactive EFP tends to decrease.
RESUMO
In recent years, polytetrafluoroethylene (PTFE)/aluminum (Al) energetic materials with high-energy density have attracted extensive attention and have broad application prospects, but the low-energy release efficiency restricts their application. In this paper, oxide, bismuth trioxide (Bi2O3) or molybdenum trioxide (MoO3) are introduced into PTFE/Al to improve the chemical reaction performance of energetic materials. The pressurization characteristics of PTFE/Al/oxide as pressure generators are compared and analyzed. The experiments show that the significantly optimized quasi-static pressure peak, impulse, and energy release efficiency (0.162 MPa, 10.177 s·kPa, and 0.74) are achieved for PTFE/Al by adding 30 wt.% Bi2O3. On the other hand, the optimal parameter obtained by adding 10% MoO3 is 0.147 MPa, 9.184 s·kPa, and 0.68. Further, the mechanism of enhancing the energy release performance of PTFE/Al through oxide is revealed. The mechanism analysis shows that the shock-induced energy release performance of PTFE/Al energetic material is affected by the intensity of the shock wave and the chemical reaction extent of the material under the corresponding intensity. The oxide to PTFE/Al increases the intensity of the shock wave in the material, but the chemical reaction extent of the material decreases under the corresponding intensity.
RESUMO
Perforation behavior of 3 mm/3 mm double-spaced aluminum plates by PTFE/Al/W (Polytetrafluoroethylene/Aluminum/Tungsten) reactive projectiles with densities ranging from 2.27 to 7.80 g/cm3 was studied experimentally and theoretically. Ballistic experiments show that the failure mode of the front plate transforms from petalling failure to plugging failure as projectile density increases. Theoretical prediction of the critical velocities for the reactive projectiles perforating the double-spaced plates is proposed, which is consistent with the experimental results and well represents the perforation performance of the projectiles. Dimensionless formulae for estimating the perforation diameter and deflection height of the front plates are obtained through dimensional analysis, indicating material density and strength are dominant factors to determine the perforation size. High-speed video sequences of the perforation process demonstrate that high-density reactive projectiles make greater damage to the rear plates because of the generation of projectile debris streams. Specifically, the maximum spray angle of the debris streams and the crater number in the debris concentration area of the rear plate both increase with the projectile density and initial velocity.
RESUMO
In this research, the bulk density homogenization and impact initiation characteristics of porous PTFE/Al/W reactive materials were investigated. Cold isostatic pressed (CIPed) and hot temperature sintered (HTSed) PTFE/Al/W reactive materials of five different theoretical maximum densities were fabricated via the mixing/pressing/sintering process. Mesoscale structure characteristics of the materials fabricated under different molding pressures were compared while the effect of molding pressures on material bulk densities was analyzed as well. By using the drop weight testing system, effects of the theoretical maximum densities (TMDs), drop heights and molding pressures on the impact initiation characteristics were studied. Quantitatively, characteristic drop heights (H50) for different types of materials were obtained. The two most significant findings of this research are the density homogenization zone and the sensitivity transition zone, which would provide meaningful guides for further design and fabrication of reactive materials.
RESUMO
The penetration enhancement behaviors of a reactive material double-layered liner (RM-DLL) shaped charge against thick steel targets are investigated. The RM-DLL comprises an inner copper liner, coupled with an outer PTFE (polytetrafluoroethylene)/Al reactive material liner, fabricated via a cold pressing/sintering process. This RM-DLL shaped charge presents a novel defeat mechanism that incorporates the penetration capability of a precursor copper jet and the chemical energy release of a follow-thru reactive material penetrator. Experimental results showed that, compared with the single reactive liner shaped charge jet, a deeper penetration depth was produced by the reactive material-copper jet, whereas the penetration performance and reactive material mass entering the penetrated target strongly depended on the reactive liner thickness and standoff. To further illustrate the penetration enhancement mechanism, numerical simulations based on AUTODYN-2D code were conducted. Numerical results indicated that, with increasing reactive liner thickness, the initiation delay time of the reactive materials increased significantly, which caused the penetration depth and the follow-thru reactive material mass to increase for a given standoff. This new RM-DLL shaped charge configuration provides an extremely efficient method to enhance the penetration damage to various potential targets, such as armored fighting vehicles, naval vessels, and concrete targets.
RESUMO
The traditional polytetraï¬uoroethylene (PTFE)/Al reactive material liner shaped charge generally produces insufficient penetration depth, although it enlarges the penetration hole diameter by chemical energy release inside the penetration crater. As such, a novel high-density reactive material liner based on the PTFE matrix was fabricated, and the corresponding penetration performance was investigated. Firstly, the PTFE/W/Cu/Pb high-density reactive material liner was fabricated via a cold pressing/sintering process. Then, jet formation and penetration behaviors at different standoffs were studied by pulse X-ray and static experiments, respectively. The X-ray results showed that the PTFE/W/Cu/Pb high-density reactive material liner forms an excellent reactive jet penetrator, and the static experimental results demonstrated that the penetration depth of this high-density reactive jet increased firstly and then decreased by increasing the standoff. When the standoff was 1.5 CD (charge diameter), the penetration depth of this reactive jet reached 2.82 CD, which was significantly higher than that of the traditional PTFE/Al reactive jet. Moreover, compared with the conventional metal copper jet penetrating steel plates, the entrance hole diameter caused by this high-density reactive jet improved 29.2% at the same standoff. Lastly, the chemical reaction characteristics of PTFE/W/Cu/Pb reactive materials were analyzed, and a semi-empirical penetration model of the high-density reactive jet was established based on the quasi-steady ideal incompressible fluid dynamics theory.