RESUMO
This study analyzed transcriptomic and proteomic data to identify molecular changes during heart failure (HF). Additionally,we embarked on an exploration of the prospect of therapeutic intervention through the manipulation of proteins implicated in ferroptosis. Three publicly available microarray datasets (GSE135055, GSE147236, GSE161472) profiling left ventricular samples from HF patients and healthy controls were obtained. Differentially expressed genes were identified in each dataset and cross-analyzed to determine shared gene signatures. Enrichment analysis of Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and gene set enrichment analysis were performed. Differentially expressed proteins were obtained from published proteomic studies and integrated with the transcriptomic results. To validate findings, a HF mouse model was generated and ferroptosis-related proteins were evaluated. Additionally, the effect of suppression of ferroptosis on hypoxia-induced ischemia model in HL-1 cardiomyocytes was assessed by knocking down Acyl-CoA synthetase long-chain family member 4 (ACSL4) using small interfering RNA (siRNA).Cross-analysis of differentially expressed genes (DEGs) in the GSE135055, GSE147236 and GSE161472 datasets revealed 224 up-regulated and 187 down-regulated potential genes which showed high enrichment in immune, inflammatory and metabolic pathways. Notably, four proteins, among them ACSL4, displayed consistent alterations at both the transcriptional and protein levels. In the HF mouse model, ACSL4 exhibited an elevation, whereas negative regulators of ferroptosis witnessed a decrement. Subsequently, knockdown of ACSL4 in a hypoxia-induced ischemic HL-1 cardiomyocyte cell model upregulated the expression of ferroptosis inhibitory protein and decreased the levels of reactive oxygen species (ROS), malondialdehyde (MDA)., and free iron and increased cell viability. Comprehensive multi-omics analysis revealed that the expression of the molecular target ACSL4 was increased in HF. Targeting ACSL4 to inhibit ferroptosis may represent a novel therapeutic strategy for HF treatment.
Assuntos
Coenzima A Ligases , Ferroptose , Insuficiência Cardíaca , Transcriptoma , Animais , Camundongos , Ferroptose/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteômica , Masculino , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Proteoma/genética , Linhagem Celular , Modelos Animais de DoençasRESUMO
The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of neointima formation in vascular restenosis. This study aims to explore the function of the long noncoding RNA H19 in neointima formation. A mouse carotid ligation model was established, and human vascular smooth muscle cells (VSMCs) were used as a cell model. lncRNA H19 overexpression promoted VSMC proliferation and migration. Moreover, miR-125a-3p potentially bound to lncRNA H19, and Fms-like tyrosine kinase-1 (FLT1) might be a direct target of miR-125a-3p in VSMCs. Upregulation of miR-125a-3p alleviated lncRNA H19-enhanced VSMC proliferation and migration. Furthermore, rescue experiments showed that enhanced expression of miR-125a-3p attenuated lncRNA H19-induced FLT1 expression in VSMCs. In addition, the overexpression of lncRNA H19 significantly exacerbated neointima formation in a mouse carotid ligation model. In summary, lncRNA H19 stimulates VSMC proliferation and migration by acting as a competing endogenous RNA (ceRNA) of miR-125a-3p. lncRNA H19 may be a therapeutic target for restenosis.
RESUMO
ABSTRACT: The high level of oxidative stress induced by angiotensin II (AngII) is the main pathophysiological process that promotes the proliferation and migration of vascular smooth muscle cells (VSMCs) and induces vascular remodeling. LncRNA Metastasis-related lung adenocarcinoma transcript 1 (MALAT1) has been determined to play an important role in the modulation of oxidative stress and the development of cardiovascular diseases. Nevertheless, the function and underlying mechanism of MALAT1 in restenosis induced by hypertensive angioplasty remain unclear. AngII increased the expression of MALAT1 in VSMCs. We found that anti-sense oligonucleotide lncRNA MALAT1 (ASO-MALAT1) could inhibit AngII induced reactive oxygen species (ROS) production and VSMCs proliferation and migration by inducing the expression of glutathione peroxidase 4 (GPX4), which can be reversed by siRNA-GPX4. And GPX4 overexpression can inhibit the proliferation and migration of VSMCs induced by AngII. In addition, we found that the process by which MALAT1 knockdown induces GPX4 expression involves nuclear factor erythrocyte 2 related factor 2 (Nrf2). Overexpression of Nrf2 can increase the expression of GPX4, and down-regulation of GPX4 by ML385 (Nrf2 inhibitor) blocked the protective effect of ASO-MALAT1 on AngII-induced proliferation and migration of VSMCs. Ferrostatin-1 (Fer-1, ip 5mg/kg per day for 2 weeks), a GPX4 agonist, significantly inhibited neointimal formation in spontaneously hypertensive rat (SHR) by the inhibition of oxidative stress. In conclusion, these data imply that ASO-MALAT1 suppresses the AngII-induced oxidative stress, proliferation and migration of VSMCs by activating Nrf2/GPX4 antioxidant signaling. GPX4 may be a potential target for the therapeutic intervention of hypertensive vascular restenosis.