Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(W1): W290-W297, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639508

RESUMO

Long distance enhancers can physically interact with promoters to regulate gene expression through formation of enhancer-promoter (E-P) interactions. Identification of E-P interactions is also important for profound understanding of normal developmental and disease-associated risk variants. Although the state-of-art predictive computation methods facilitate the identification of E-P interactions to a certain extent, currently there is no efficient method that can meet various requirements of usage. Here we developed EPIXplorer, a user-friendly web server for efficient prediction, analysis and visualization of E-P interactions. EPIXplorer integrates 9 robust predictive algorithms, supports multiple types of 3D contact data and multi-omics data as input. The output from EPIXplorer is scored, fully annotated by regulatory elements and risk single-nucleotide polymorphisms (SNPs). In addition, the Visualization and Downstream module provide further functional analysis, all the output files and high-quality images are available for download. Together, EPIXplorer provides a user-friendly interface to predict the E-P interactions in an acceptable time, as well as understand how the genome-wide association study (GWAS) variants influence disease pathology by altering DNA looping between enhancers and the target gene promoters. EPIXplorer is available at https://www.csuligroup.com/EPIXplorer.


Assuntos
Estudo de Associação Genômica Ampla , Sequências Reguladoras de Ácido Nucleico , Software , Humanos , Algoritmos , Computadores , Suscetibilidade a Doenças , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Internet
2.
Br J Haematol ; 199(3): 427-442, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35974424

RESUMO

Normal early erythropoiesis depends on the precise regulation of protein expression and phosphorylation modification. Dysregulation of protein levels or modification contributes to erythroid disorders. To date, the dynamics of protein phosphorylation profiling across human erythroid development is not fully understood. Here, we characterized quantitative proteomic and phosphoproteomic profiling by tandem mass-tagging technology. We systemically built phospho-expression profiling and expression clusters of 11 414 phosphopeptides for human early erythropoiesis. The standardization methods for multitier integrative analyses revealed multiple functional modules of phosphoproteins (e.g., regulation of the G2/M transition) and active phosphorylated signalling (e.g., cell cycle-related pathways). Our further analysis revealed that CDK family members were the main kinases that phosphorylate substrates in erythroid progenitors and identified that CDK9 played an important role in the proliferation of erythroid progenitors. Collectively, our phosphoproteomic profiling, integrative network analysis and functional studies define landscapes of the phosphoproteome and reveal signalling pathways that are involved in human early erythropoiesis. This study will serve as a valuable resource for further investigations of phosphatase and kinase functions in human erythropoiesis and erythroid-related diseases.


Assuntos
Eritropoese , Proteômica , Humanos , Eritropoese/genética , Fosfopeptídeos , Fosfoproteínas/genética , Monoéster Fosfórico Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA