Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Bioorg Med Chem Lett ; 103: 129709, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494040

RESUMO

A class of unique hydrazyl hydroxycoumarins (HHs) as novel structural scaffold was developed to combat dreadful bacterial infections. Some HHs could effectively suppress bacterial growth at low concentrations, especially, pyridyl HH 7 exhibited a good inhibition against Pseudomonas aeruginosa 27853 with a low MIC value of 0.5 µg/mL, which was 8-fold more active than norfloxacin. Furthermore, pyridyl HH 7 with low hemolytic activity and low cytotoxicity towards NCM460 cells showed much lower trend to induce the drug-resistant development than norfloxacin. Preliminarily mechanism exploration indicated that pyridyl HH 7 could eradicate the integrity of bacterial membrane, result in the leakage of intracellular proteins, and interact with bacterial DNA gyrase via non-covalent binding, and ADME analysis manifested that compound 7 gave good pharmacokinetic properties. These results suggested that the newly developed hydrazyl hydroxycoumarins as potential multitargeting antibacterial agents should be worthy of further investigation for combating bacterial infection.


Assuntos
Norfloxacino , Pseudomonas aeruginosa , Norfloxacino/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , DNA Girase , Testes de Sensibilidade Microbiana
2.
Org Biomol Chem ; 22(6): 1205-1212, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38224270

RESUMO

Hydroxyl radicals (˙OH) as one of the highly reactive species can react unselectively with a wide range of chemicals. The ˙OH radicals are typically generated under harsh conditions. Herein, we report hydroxyl radical-induced selective N-α C(sp3)-H bond oxidation of amides under greener and mild conditions via an Fe(NO3)3·9H2O catalyst inner sphere pathway upon irradiation with a 30 W blue LED light strip (λ = 455 nm) using NaBrO3 as the oxidant. This protocol exhibited high chemoselectivity and excellent functional group tolerance. A preliminary mechanism investigation demonstrated that the iron catalyst afforded hydroxyl radicals via the visible-light-induced homolysis (VLIH) of iron complexes followed by a hydrogen atom transfer (HAT) process to realize this transformation.

3.
Bioorg Chem ; 148: 107451, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759357

RESUMO

Aminothiazolyl coumarins as potentially new antimicrobial agents were designed and synthesized in an effort to overcome drug resistance. Biological activity assay revealed that some target compounds exhibited significantly inhibitory efficiencies toward bacteria and fungi including drug-resistant pathogens. Especially, aminothiazolyl 7-propyl coumarin 8b and 4-dichlorobenzyl derivative 11b exhibited bactericidal potential (MBC/MIC = 2) toward clinically drug-resistant Enterococcus faecalis with low cytotoxicity to human lung adenocarcinoma A549 cells, rapidly bactericidal effects and no obvious bacterial resistance development against E. faecalis. The preliminary antibacterial action mechanism studies suggested that compound 11b was able to disturb E. faecalis membrane effectively, and interact with bacterial DNA isolated from resistant E. faecalis through noncovalent bonds to cleave DNA, thus inhibiting the growth of E. faecalis strain. Further molecular modeling indicated that compounds 8b and 11b could bind with SER-1084 and ASP-1083 residues of gyrase-DNA complex through hydrogen bonds and hydrophobic interactions. Moreover, compound 11b showed low hemolysis and in vivo toxicity. These findings of aminothiazolyl coumarins as unique structural scaffolds might hold a large promise for the treatments of drug-resistant bacterial infection.


Assuntos
Antibacterianos , Cumarínicos , Enterococcus faecalis , Testes de Sensibilidade Microbiana , Enterococcus faecalis/efeitos dos fármacos , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química , DNA Bacteriano/metabolismo , Células A549 , Hemólise/efeitos dos fármacos
4.
J Org Chem ; 88(13): 7998-8009, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37279456

RESUMO

An unexpected Ugi cascade reaction was developed for the facile construction of γ-lactam-fused pyridone derivatives with high tolerance of substrates. A C(sp3)-N bond and a C(sp2)-C(sp2) bond were formed together, accompanied by a chromone ring-opening in Ugi adducts, under the basic conditions without any metal catalyst for the whole process. Screening data of several difficult-to-inhibit cancer cell lines demonstrated that 7l displayed a high cytotoxicity against HCT116 cells (IC50 = 5.59 ± 0.78 µM). Taken together, our findings revealed new insights into the molecular mechanisms underlying compound 7l and provided potential usage of this scaffold for cancer therapeutics.


Assuntos
Compostos Heterocíclicos , Lactamas , Lactamas/farmacologia , Piridonas/farmacologia , Piridonas/química , Metais
5.
Org Biomol Chem ; 21(42): 8579-8583, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853839

RESUMO

Tuning the electronic structure of protecting groups on the nitrogen atom of substrates has emerged as an effective strategy to achieve the tandem trifluoromethylation/C(sp2)-H annulation using Langlois' reagent as the CF3 source for the electrochemical synthesis of functionalized tetrahydroquinolines and dihydroquinolinones.

6.
J Org Chem ; 87(17): 11888-11898, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35976796

RESUMO

An efficient one-pot reaction of propargylamides, isocyanides, and water catalyzed by zinc was developed for the rapid construction of 2-oxazolines with a wide functional group tolerance. The methylene-3-oxazoline was proven to play a vitally important role to start the tandem cascade transformation through unfunctionalized alkynes with sequential nucleophilic addition approaches of isocyanide and water. Notably, with a slight alteration of the reaction temperature and the addition of one molecule of water, various ß-amino amide derivatives were synthesized in good to excellent yields.


Assuntos
Amidas , Cianetos , Estrutura Molecular , Água , Zinco
7.
Bioorg Med Chem Lett ; 64: 128695, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35314326

RESUMO

The dramatic rise in drug resistance accelerated the desire for new antibacterial agents to safeguard human health. This work constructed a novel type of aloe emodin-hybridized sulfonamide aminophosphates as unique potential antibacterial agents. The biological assay revealed that some target hybrids possessed potent inhibitory activity. Particularly, ethyl aminophosphate-hybridized sulfadiazine aloe emodin 7a (EASA-7a) not only displayed preponderant antibacterial efficiency against drug-resistant E. faecalis at low concentration as 0.25 µg/mL but also possessed strong bacteriostatic capacity and low propensity to develop resistance toward E. faecalis. The weak hemolysis toward human red blood cells and efficient biofilm-disruptive ability further implied the therapeutic potential of EASA-7a. Preliminary studies disclosed that the excellent antibacterial behavior of EASA-7a might be attributed to its capacity to permeate and depolarize the bacterial membrane, as well as promote ROS accumulation and intercalate with DNA. These findings manifested that EASA-7a was worthy of further development to combat life-threatening bacterial infections.


Assuntos
Enterococcus faecalis , Substâncias Intercalantes , Antraquinonas/farmacologia , Antibacterianos/farmacologia , Humanos , Sulfanilamida
8.
Bioorg Med Chem Lett ; 76: 129012, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36182008

RESUMO

In an effort for fighting with dreadful drug resistance, iminotetraberberine was hybridized with metronidazole to construct a unique type of potential broad-spectrum antibacterial iminotetrahydroberberine-corbelled metronidazoles. Some prepared hybrids exerted promising inhibitory effects against the tested microorganisms in comparison to the natural berberine, clinical metronidazole and norfloxacin. Noticeably, phenyl oxime derivative 8e displayed a broad antibacterial spectrum with a quite low MIC value of 0.024 mM against P. aeruginosa, being 63-, 62- and 2-fold to berberine, metronidazole and norfloxacin, respectively. The active compound 8e with low cytotoxicity under effective bacteriostatic concentration could decrease biofilm viability and show much lower trend to induce the resistant development than norfloxacin in the tested period. Mechanism investigation showed that compound 8e could disturb the bacterial membrane to lead to the leakage of cellular contents, thus exerting potent antibacterial potency. It was also revealed that compound 8e could interact with penicillin binding protein via multi-site non-covalent binding in docking simulation. The above results manifested that iminotetrahydroberberine-corbelled metronidazoles might bring hope for the exploitation of new broad-spectrum antibacterial agents with a membrane-destruction mechanism.


Assuntos
Antibacterianos , Berberina , Antibacterianos/farmacologia , Antibacterianos/química , Metronidazol/farmacologia , Norfloxacino/farmacologia , Testes de Sensibilidade Microbiana , Berberina/farmacologia , Berberina/química , Proteínas de Ligação às Penicilinas , Pseudomonas aeruginosa , Oximas/farmacologia
9.
Bioorg Med Chem Lett ; 73: 128885, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835379

RESUMO

Pyrimidine-conjugated fluoroquinolones were constructed to cope with the dreadful resistance. Most of the target pyrimidine derivatives effectively suppressed the growth of the tested strains, especially, 4-aminopyrimidinyl compound 1c showed a broad antibacterial spectrum and low cytotoxicity and exhibited superior antibacterial potency against Enterococcus faecalis with a low MIC of 0.25 µg/mL to norfloxacin and ciprofloxacin. The active compound 1c with fast bactericidal potency could inhibit the formation of biofilms and showed much lower trend for the development of drug-resistance than norfloxacin and ciprofloxacin. Further exploration revealed that compound 1c could prompt ROS accumulations in bacterial cells and interact with DNA to form a DNA-1c complex, thus facilitating bacterial death. ADME analysis indicated that compound 1c possessed favorable drug-likeness and promising pharmacokinetic properties. These results demonstrated that pyrimidine-conjugated fluoroquinolones held hope as potential antibacterial candidates and deserve further study.


Assuntos
Antibacterianos , Fluoroquinolonas , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , Norfloxacino/farmacologia , Pirimidinas/farmacologia
10.
Bioorg Chem ; 127: 106035, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870413

RESUMO

Aloe emodin-conjugated sulfonyl hydrazones were designed and synthesized as novel type of antibacterial modulators. Aloe emodin benzenesulfonyl hydrazone 5a (AEBH-5a) was preponderant for the treatment of S. aureus 25923 (MIC = 0.5 µg/mL) over norfloxacin and presented high selectivity between bacterial membranes and mammalian membranes. Especially, AEBH-5a could eliminate the formed biofilms and relieve the development of S. aureus 25923 resistance. The antibacterial mechanism of AEBH-5a from extracellularity to intracellularity illustrated that AEBH-5a could destroy bacterial membrane integrity, leading to the leakage of protein and nucleic acid. Besides, AEBH-5a could not only interact with DNA and induce oxidative stress but also inhibit lactate dehydrogenase (LDH) activity as well as render metabolic inactivation. In silico ADME studies prediction of AEBH-5a revealed a favorable bioavailability score and prominent drug-likeness profile. This research showed that the multifaceted synergistic effect initiated by aloe emodin-conjugated sulfonyl hydrazones is a reasonable and effective tactic to combat menacing bacterial infections.


Assuntos
Emodina , Staphylococcus aureus Resistente à Meticilina , Animais , Antraquinonas , Antibacterianos/farmacologia , Bactérias , Emodina/farmacologia , Hidrazonas/farmacologia , Mamíferos , Staphylococcus aureus
11.
Bioorg Chem ; 122: 105718, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35255343

RESUMO

The dreadful bacterial resistance to clinical drugs calls for the development of novel antibacterials. This work developed a class of unique metronidazole-derived three-component hybrids as promising antibacterial therapeutic alternatives. Bioactive assay discovered that p-chlorophenylhydrazone derivative 6b possessed excellent ability to suppress the growth of drug-resistant E. coli (MIC = 0.5 µg/mL), being 16 folds more potent than norfloxacin (MIC = 8 µg/mL). The active molecule 6b with imperceptible hemolysis could effectively retard the development of bacterial drug resistance within 30 passages. Moreover, compound 6b displayed a favorable inhibitory effect on E. coli biofilms and could act rapidly in bactericidal efficacy. Subsequent exploration of mechanism revealed that 6b could destruct the bacterial cytoplasmic membrane, leading to the leakage of intracellular protein. The inactivation of lactate dehydrogenase, metabolic stagnation and the accumulation of reactive oxygen species caused by 6b were observed. Furthermore, molecule 6b could form a supramolecular complex with DNA to obstruct DNA replication. These results demonstrated that metronidazole-derived three-component hybrids provided a large potential for deep development as prospective antibacterial agents.


Assuntos
Escherichia coli , Metronidazol , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Metronidazol/farmacologia , Testes de Sensibilidade Microbiana , Estudos Prospectivos
12.
Bioorg Chem ; 124: 105855, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35576797

RESUMO

A novel type of coumarin thiazoles as unique multi-targeting antimicrobial agents were developed through four steps including cyclization, nucleophilic substitution and condensation starting from commercial resorcine. Most of the prepared coumarin thiazoles displayed favorable inhibitory potency against the tested strains. Noticeably, methyl oxime V-a exerted potent inhibitory efficacy against methicillin-resistant Staphylococcus aureus (MRSA) at low concentration (1 µg/mL) and showed broad antimicrobial spectrum. Medicinal bioevaluations revealed that the active molecule V-a exhibited low toxicity toward mammalian cells, rapidly killing effect, good capability of eradicating MRSA biofilms and unobvious probability to engender drug resistance. Chemical biological methods were employed to investigate preliminary mechanism, which indicated that compound V-a was able to damage the integrity of membrane to trigger leakage of protein, insert into MRSA DNA to block its replication and induce the generation of reactive oxygen species (ROS) to inhibit bacterial growth. Computational study manifested that low HOMO-LUMO energy gap of molecule V-a was favorable to exert high antimicrobial activity.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes , Cumarínicos/química , Cumarínicos/farmacologia , Mamíferos , Testes de Sensibilidade Microbiana , Esqueleto , Tiazóis/química , Tiazóis/farmacologia
13.
Chemistry ; 27(10): 3278-3283, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33289166

RESUMO

We report a challenging copper-catalyzed Cformyl -H arylation of salicylaldehydes with arylboronic acids that involves unique salicylaldehydic copper species that differ from reported salicylaldehydic rhodacycles and palladacycles. This protocol has high chemoselectivity for the Cformyl -H bond compared to the phenolic O-H bond involving copper catalysis under high reaction temperatures. This approach is compatible with a wide range of salicylaldehyde and arylboronic acid substrates, including estrone and carbazole derivatives, which leads to the corresponding arylation products. Mechanistic studies show that the 2-hydroxy group of the salicylaldehyde substrate triggers the formation of salicylaldehydic copper complexes through a CuI /CuII /CuIII catalytic cycle.

14.
Bioorg Med Chem Lett ; 41: 127995, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33775834

RESUMO

A class of structurally unique para-aminobenzenesulfonyl oxadiazoles as new potential antimicrobial agents was designed and synthesized from acetanilide. Some target para-aminobenzenesulfonyl oxadiazoles showed antibacterial potency. Noticeably, hexyl derivative 8b (MIC = 1 µg/mL) was more active than norfloxacin against drug resistant MRSA. Compound 8b was able to disturb the membrane effectively and intercalate into deoxyribonucleic acid (DNA) to form a steady 8b-DNA complex, which might be responsible for bacterial metabolic inactivation. Molecular docking indicated that 8b could interact with DNA topoisomerase IV through noncovalent interactions to form a supramolecular complex and hinder the function of this enzyme. These results indicated that hexyl derivative 8b deserved further investigation as a new lead compound.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oxidiazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade
15.
Bioorg Med Chem Lett ; 41: 128030, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33839249

RESUMO

Novel antibiotics are forced to be developed on account of multidrug-resistant bacteria with serious threats to human health. This work developed isatin-derived azoles as new potential antimicrobial agents. Bioactive assay revealed that isatin hybridized 1,2,4-triazole 7a exhibited excellent inhibitory activity against E. coli ATCC 25,922 with an MIC value of 1 µg/mL, which was 8-fold more potent than reference drug norfloxacin. The active molecule 7a possessed the ability to kill some bacteria and fungi as well as displayed low propensity to induce resistance towards E. coli ATCC25922. Preliminary mechanism investigation indicated that hybrid 7a might block deoxyribonucleic acid (DNA) replication by intercalating with DNA and possibly interacting with DNA polymerase III, thus exerting its antimicrobial potency.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Azóis/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Isatina/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Azóis/síntese química , Azóis/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Isatina/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
16.
Bioorg Med Chem Lett ; 47: 128198, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119615

RESUMO

A novel type of sulfonyl-hybridized imidazolyl ethanols as potential DNA-targeting antibacterial agents was constructed via the unique ring-opened reaction of oxiranes by imidazoles for the first time. Some developed target hybrids showed potential antimicrobial potency against the tested microbes. Especially, imidazole derivative 5f could strongly suppressed the growth of MRSA (MIC = 4 µg/mL), which was 2-fold and 16-fold more potent than the positive control sulfathiazole and norfloxacin. This compound exhibited quite low propensity to induce bacterial resistance. Antibacterial mechanism exploration indicated that compound 5f could embed in MRSA DNA to form steady 5f-DNA complex, which possibly hinder DNA replication to exert antimicrobial behavior. Molecular docking showed that molecule 5f could bind with dihydrofolate synthetase through hydrogen bonds. These results implied that imidazole derivative 5f could be served as a promising molecule for the exploration of novel antibacterial candidates.


Assuntos
Antibacterianos/farmacologia , DNA Bacteriano/efeitos dos fármacos , Etanol/farmacologia , Imidazóis/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Etanol/síntese química , Etanol/química , Imidazóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
17.
Bioorg Chem ; 113: 105039, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34091291

RESUMO

A series of 2-aminothiazole sulfanilamide oximes were developed as new membrane active antibacterial agents to conquer the microbial infection. Benzoyl derivative 10c was preponderant for the treatment of drug-resistant A. baumannii infection in contrast to norfloxacin and exerted excellent biocompatibility against mammalian cells including erythrocyte and LO2 cell line. Meanwhile, it had ability to eradicate established biofilm to alleviate the resistance burden. Mechanism investigation elucidated that compound 10c was able to disturb the membrane effectively and inhibit lactic dehydrogenase, which led to cytoplasmic content leakage. The cellular redox homeostasis was interfered via the production of reactive oxygen and nitrogen species (RONS), which further contributed to respiratory pathway inactivation and reduction of GSH activity. This work indicated that 2-aminothiazole sulfanilamide oximes could be a promising start for the exploitation of novel antibacterial agents against pathogens.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Oximas/química , Acinetobacter baumannii/fisiologia , Animais , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular , Estresse Oxidativo/efeitos dos fármacos , Oximas/farmacologia , Relação Estrutura-Atividade , Sulfanilamida/química , Tiazóis/química
18.
Pestic Biochem Physiol ; 175: 104849, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33993967

RESUMO

Staphylococcus aureus resistance poses nonnegligible threats to the livestock industry. In light of this, carbazole-oxadiazoles were designed and synthesized for treating S. aureus infection. Bioassay discovered that 3,6-dibromocarbazole derivative 13a had effective inhibitory activities to several Gram-positive bacteria, in particular to S. aureus, S. aureus ATCC 29213, MRSA and S. aureus ATCC 25923 (MICs = 0.6-4.6 nmol/mL), which was more active than norfloxacin (MICs = 6-40 nmol/mL). Subsequent studies showed that 3,6-dibromocarbazole derivative 13a acted rapidly on S. aureus ATCC 29213 and possessed no obvious tendency to induce bacterial resistance. Further evaluations indicated that 3,6-dibromocarbazole derivative 13a showed strong abilities to disrupt bacterial biofilm and interfere with DNA, which might be the power sources of antibacterial performances. Moreover, 3,6-dibromocarbazole derivative 13a also exhibited slight cell lethality toward Hek 293 T and LO2 cells and low hemolytic toxicity to red blood cells. The above results implied that the active molecule 13a could be studied in the future development of agricultural available antibiotics.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Antibacterianos/farmacologia , Carbazóis/farmacologia , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Oxidiazóis
19.
J Org Chem ; 85(2): 774-787, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31829008

RESUMO

A palladium-catalyzed alkenylation involving remote δ-position C(alkenyl)-H activation of cycloalkenes reacting with electron-deficient alkenes is described. This method features excellent site selectivity and stereoselectivity to efficiently afford only E-selective highly substituted 1,3-diene derivatives with extra-ligand-free and good functional group tolerance including estrone and free N-H tryptamine under weakly alkaline conditions. Mechanistic studies suggest that picolinamide as a bidentate directing group enables the formation of unique alkenyl palladacycle intermediates.

20.
Bioorg Med Chem Lett ; 30(6): 126982, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32001137

RESUMO

This work explored a novel type of potential multi-targeting antimicrobial three-component sulfanilamide hybrids in combination of pyrimidine and azoles. The hybridized target molecules were characterized by 1H NMR, 13C NMR and HRMS spectra. Some of the developed target compounds exerted promising antimicrobial activity in comparison with the reference drugs norfloxacin and fluconazole. Noticeably, sulfanilamide hybrid 5c with pyrimidine and indole could effectively inhibit the growth of E. faecalis with MIC value of 1 µg/mL. The active molecule 5c showed low cell toxicity and did not obviously trigger the development of resistance towards the tested bacteria strains. Mechanism exploration indicated that compound 5c could not only exert efficient membrane permeability, but also intercalate into DNA of resistant E. faecalis to form 5c-DNA supramolecular complex, which might be responsible for its antimicrobial action. The further investigation showed that this molecule could be effectively transported by human serum albumins through hydrogen bonds and van der Waals force.


Assuntos
Anti-Infecciosos/química , Azóis/farmacologia , Substâncias Intercalantes/química , Pirimidinas/farmacologia , Sulfanilamida/química , Células A549 , Anti-Infecciosos/farmacologia , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , DNA/química , DNA Girase/química , Quimioterapia Combinada , Enterococcus faecalis/efeitos dos fármacos , Fluconazol/farmacologia , Fluconazol/normas , Humanos , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Norfloxacino/farmacologia , Norfloxacino/normas , Albumina Sérica Humana/química , Relação Estrutura-Atividade , Sulfanilamida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA