Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2309087121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557184

RESUMO

Africa carries a disproportionately high share of the global malaria burden, accounting for 94% of malaria cases and deaths worldwide in 2019. It is also a politically unstable region and the most vulnerable continent to climate change in recent decades. Knowledge about the modifying impacts of violent conflict on climate-malaria relationships remains limited. Here, we quantify the associations between violent conflict, climate variability, and malaria risk in sub-Saharan Africa using health surveys from 128,326 individuals, historical climate data, and 17,429 recorded violent conflicts from 2006 to 2017. We observe that spatial spillovers of violent conflict (SSVCs) have spatially distant effects on malaria risk. Malaria risk induced by SSVCs within 50 to 100 km from the households gradually increases from 0.1% (not significant, P>0.05) to 6.5% (95% CI: 0 to 13.0%). SSVCs significantly promote malaria risk within the average 20.1 to 26.9 °C range. At the 12-mo mean temperature of 22.5 °C, conflict deaths have the largest impact on malaria risk, with an approximately 5.8% increase (95% CI: 1.0 to 11.0%). Additionally, a pronounced association between SSVCs and malaria risk exists in the regions with 9.2 wet days per month. The results reveal that SSVCs increase population exposure to harsh environments, amplifying the effect of warm temperature and persistent precipitation on malaria transmission. Violent conflict therefore poses a substantial barrier to mosquito control and malaria elimination efforts in sub-Saharan Africa. Our findings support effective targeting of treatment programs and vector control activities in conflict-affected regions with a high malaria risk.


Assuntos
Exposição à Violência , Malária , Humanos , Malária/epidemiologia , África Subsaariana/epidemiologia , Temperatura
2.
J Environ Manage ; 325(Pt B): 116562, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308967

RESUMO

Vegetation change reflects sensitive responses of ecosystem environment to global climate change as well as land use. It is well known that land use type and its transformation affect vegetation change. However, how the changes in land use intensity (LUI) within different land use types impact vegetation and the interactions with other drivers remain poorly understood. We measured the LUI of Jiangsu Province, China, within the main land use types in 1995, 2000, 2005, 2010, 2015 and 2018 by combining remote sensing-based land use data with representative county scale economic and social indicators. Structural equation models (SEMs) were built to quantify the influences of long term LUI on vegetation change interacting with economic development, climate change and topographical conditions in transformed land, cropland, rural settlements and urbanized land, respectively. Seventy percent of significant vegetation change existed in non-transformed land use types. Although the area with a vegetation greening trend is larger than that with a vegetation browning trend, the vegetation browning areas is prominent in urbanized lands and some croplands in south basins. The constructed SEMs suggested the dominant negative effect of fast economic development regardless of land use types, while LUI played important and different direct and indirect effects on affecting vegetation change significantly interacting with economic development and climate change in different land use types. The LUI increasing led a vegetation greening in cropland, and stronger than climate warming with both positive direct and indirect effects for influencing climate change. The LUI change took negative effects on vegetation change in rural and urban areas, while a positive indirect effect of LUI increasing in urbanized land signaled the positive results of human managements. We then provided some land use-specific suggestions on basin scale for land management in Jiangsu. Our results highlight the necessity of long-term LUI quantification and promote the understanding of its effects on vegetation change interacted with other drivers within different land use types. This can be very helpful for sustainable land use and managements in regions with fast economic development.


Assuntos
Mudança Climática , Ecossistema , Humanos , Desenvolvimento Econômico , Modelos Teóricos , China
3.
BMC Public Health ; 21(1): 604, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781224

RESUMO

BACKGROUND: The effect of the COVID-19 outbreak has led policymakers around the world to attempt transmission control. However, lockdown and shutdown interventions have caused new social problems and designating policy resumption for infection control when reopening society remains a crucial issue. We investigated the effects of different resumption strategies on COVID-19 transmission using a modeling study setting. METHODS: We employed a susceptible-exposed-infectious-removed model to simulate COVID-19 outbreaks under five reopening strategies based on China's business resumption progress. The effect of each strategy was evaluated using the peak values of the epidemic curves vis-à-vis confirmed active cases and cumulative cases. Two-sample t-test was performed in order to affirm that the pick values in different scenarios are different. RESULTS: We found that a hierarchy-based reopen strategy performed best when current epidemic prevention measures were maintained save for lockdown, reducing the peak number of active cases and cumulative cases by 50 and 44%, respectively. However, the modeled effect of each strategy decreased when the current intervention was lifted somewhat. Additional attention should be given to regions with significant numbers of migrants, as the potential risk of COVID-19 outbreaks amid society reopening is intrinsically high. CONCLUSIONS: Business resumption strategies have the potential to eliminate COVID-19 outbreaks amid society reopening without special control measures. The proposed resumption strategies focused mainly on decreasing the number of imported exposure cases, guaranteeing medical support for epidemic control, or decreasing active cases.


Assuntos
COVID-19/prevenção & controle , Surtos de Doenças/prevenção & controle , Pandemias , COVID-19/epidemiologia , China/epidemiologia , Controle de Doenças Transmissíveis , Atividades Humanas/estatística & dados numéricos , Humanos , Modelos Estatísticos , SARS-CoV-2
4.
Sensors (Basel) ; 17(9)2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914787

RESUMO

Cloud cover is inevitable in optical remote sensing (RS) imagery on account of the influence of observation conditions, which limits the availability of RS data. Therefore, it is of great significance to be able to reconstruct the cloud-contaminated ground information. This paper presents a sparse dictionary learning-based image inpainting method for adaptively recovering the missing information corrupted by thick clouds patch-by-patch. A feature dictionary was learned from exemplars in the cloud-free regions, which was later utilized to infer the missing patches via sparse representation. To maintain the coherence of structures, structure sparsity was brought in to encourage first filling-in of missing patches on image structures. The optimization model of patch inpainting was formulated under the adaptive neighborhood-consistency constraint, which was solved by a modified orthogonal matching pursuit (OMP) algorithm. In light of these ideas, the thick-cloud removal scheme was designed and applied to images with simulated and true clouds. Comparisons and experiments show that our method can not only keep structures and textures consistent with the surrounding ground information, but also yield rare smoothing effect and block effect, which is more suitable for the removal of clouds from high-spatial resolution RS imagery with salient structures and abundant textured features.

5.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 32(6): 1335-42, 2015 Dec.
Artigo em Zh | MEDLINE | ID: mdl-27079110

RESUMO

In order to improve the reliability of cardiac pacemaker contact-less power supply technology, this paper proposes a novel application of wireless feedback voltage stabilizing technology to adjust heart disease patients with inner power supply filter circuit output voltage and current control method, to keep the output voltage stability, and to ensure that the super capacitor and cardiac pacemaker to get a stable power supply. To implement the real-time accurate voltage control with considering the primary and secondary side inductance coupling coefficient changes, the change of the external power supply voltage and load, it is necessary to test thee real-time and accurate output voltage and current value after rectifying filtering. Therefore, based on the chaotic control theory, we adopted method of phase diagram on the basis of the quick observation after rectifying filtering, so that the method of voltage and current could improve the detection time of the circuit. The phase diagram of proposed control method can be divided into 8 segments, and we got 7 zero-extreme points. When these zero-extreme points are detected, according to extreme points of the zero instantaneous values, the corresponding average values of voltage and current were obtained. Simulation and experimental results showed that using the above method can shorten the response time to less than switch devices 1/2 switching cycles, thus validating the effectiveness and feasibility of the proposed detection algorithm.


Assuntos
Fontes de Energia Elétrica , Marca-Passo Artificial , Tecnologia sem Fio , Algoritmos , Retroalimentação , Humanos , Dinâmica não Linear
6.
Artigo em Inglês | MEDLINE | ID: mdl-38381647

RESUMO

Node importance estimation (NIE) is the task of inferring the importance scores of the nodes in a graph. Due to the availability of richer data and knowledge, recent research interests of NIE have been dedicated to knowledge graphs (KGs) for predicting future or missing node importance scores. Existing state-of-the-art NIE methods train the model by available labels, and they consider every interested node equally before training. However, the nodes with higher importance often require or receive more attention in real-world scenarios, e.g., people may care more about the movies or webpages with higher importance. To this end, we introduce Label Informed ContrAstive Pretraining (LICAP) to the NIE problem for being better aware of the nodes with high importance scores. Specifically, LICAP is a novel type of contrastive learning (CL) framework that aims to fully utilize continuous labels to generate contrastive samples for pretraining embeddings. Considering the NIE problem, LICAP adopts a novel sampling strategy called top nodes preferred hierarchical sampling to first group all interested nodes into a top bin and a nontop bin based on node importance scores, and then divide the nodes within the top bin into several finer bins also based on the scores. The contrastive samples are generated from those bins and are then used to pretrain node embeddings of KGs via a newly proposed predicate-aware graph attention networks (PreGATs), so as to better separate the top nodes from nontop nodes, and distinguish the top nodes within the top bin by keeping the relative order among finer bins. Extensive experiments demonstrate that the LICAP pretrained embeddings can further boost the performance of existing NIE methods and achieve new state-of-the-art performance regarding both regression and ranking metrics. The source code for reproducibility is available at https://github.com/zhangtia16/LICAP.

7.
Nat Commun ; 15(1): 8398, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333536

RESUMO

China's large-scale tree planting programs are critical for achieving its carbon neutrality by 2060, but determining where and how to plant trees for maximum carbon sequestration has not been rigorously assessed. Here, we developed a comprehensive machine learning framework that integrates diverse environmental variables to quantify tree growth suitability and its relationship with tree numbers. Then, their correlations with biomass carbon stocks were robustly established. Carbon sink potentials were mapped in distinct tree-planting scenarios. Under one of them aligned with China's ecosystem management policy, 44.7 billion trees could be planted, increasing forest stock by 9.6 ± 0.8 billion m³ and sequestering 5.9 ± 0.5 PgC equivalent to double China's 2020 industrial CO2 emissions. We found that tree densification within existing forests is an economically viable and effective strategy and so it should be a priority in future large-scale planting programs.


Assuntos
Biomassa , Sequestro de Carbono , Florestas , Árvores , China , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Ecossistema , Aprendizado de Máquina , Agricultura Florestal/métodos , Conservação dos Recursos Naturais
8.
IEEE Trans Pattern Anal Mach Intell ; 46(11): 7421-7433, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38687660

RESUMO

Generalizing out-of-distribution (OoD) is critical but challenging in real applications such as unmanned aerial vehicle (UAV) flight control. Previous machine learning-based control has shown promise in dealing with complex real-world environments but suffers huge performance degradation facing OoD scenarios, posing risks to the stability and safety of UAVs. In this paper, we found that the introduced random noises during training surprisingly yield theoretically guaranteed performances via a proposed functional optimization framework. More encouragingly, this framework does not involve common Lyapunov assumptions used in this field, making it more widely applicable. With this framework, the upperbound for control error is induced. We also proved that the induced random noises can lead to lower OoD control errors. Based on our theoretical analysis, we further propose OoD-Control to generalize control in unseen environments. Numerical experiments demonstrate the superiority of the proposed algorithm, surpassing previous state-of-the-art by 65% under challenging unseen environments. We further extend to outdoor real-world experiments and found that the control error is reduced by 50% approximately.

9.
iScience ; 26(3): 106185, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36879806

RESUMO

The expansion of dryland has caused a huge impact on the natural environment and human society. Aridity index (AI) can effectively reflect the degree of dryness, but spatiotemporally continuous estimation of AI is still challenging. In this study, we develop an ensemble learning algorithm to retrieve AIs from MODIS satellite data in China from 2003 to 2020. The validation proves the high match between these satellite AIs and their corresponding station estimates with a root-mean-square error of 0.21, bias of -0.01, and correlation coefficient of 0.87. The analysis results indicate China has been drying in recent two decades. Moreover, the North China Plain is undergoing an intense drying process, whereas the Southeastern China is becoming significantly more humid. On the national scale, China's dryland area shows a slight expansion, while the hyper arid area has a decreasing trend. These understandings have contributed to China's drought assessment and mitigation.

10.
PLoS One ; 18(1): e0279314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36598886

RESUMO

Scientific literature, as the major medium that carries knowledge between scientists, exhibits explosive growth in the last century. Despite the frequent use of many tangible measures, to quantify the influence of literature from different perspectives, it remains unclear how knowledge is embodied and measured among tremendous scientific productivity, as knowledge underlying scientific literature is abstract and difficult to concretize. In this regard, there has laid a vacancy in the theoretical embodiment of knowledge for their evaluation and excavation. Here, for the first time, we quantify the knowledge from the perspective of information structurization and define a new measure of knowledge quantification index (KQI) that leverages the extent of disorder difference caused by hierarchical structure in the citation network to represent knowledge production in the literature. Built upon 214 million articles, published from 1800 to 2021, KQI is demonstrated for mining influential classics and laureates that are omitted by traditional metrics, thanks to in-depth utilization of structure. Due to the additivity of entropy and the interconnectivity of the network, KQI assembles numerous scientific impact metrics into one and gains interpretability and resistance to manipulation. In addition, KQI explores a new perspective regarding knowledge measurement through entropy and structure, utilizing structure rather than semantics to avoid ambiguity and attain applicability.


Assuntos
Publicações , Semântica
11.
Nat Commun ; 14(1): 121, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624102

RESUMO

Vegetation change can alter surface energy balance and subsequently affect the local climate. This biophysical impact has been well studied for forestation cases, but the sign and magnitude for persistent earth greening remain controversial. Based on long-term remote sensing observations, we quantify the unidirectional impact of vegetation greening on radiometric surface temperature over 2001-2018. Here, we show a global negative temperature response with large spatial and seasonal variability. Snow cover, vegetation greenness, and shortwave radiation are the major driving factors of the temperature sensitivity by regulating the relative dominance of radiative and non-radiative processes. Combined with the observed greening trend, we find a global cooling of -0.018 K/decade, which slows down 4.6 ± 3.2% of the global warming. Regionally, this cooling effect can offset 39.4 ± 13.9% and 19.0 ± 8.2% of the corresponding warming in India and China. These results highlight the necessity of considering this vegetation-related biophysical climate effect when informing local climate adaptation strategies.


Assuntos
Mudança Climática , Clima , Temperatura , China , Índia , Ecossistema
12.
Sci Bull (Beijing) ; 68(19): 2236-2246, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604723

RESUMO

Sustainable development in impoverished areas is still a global challenge owing to trade-offs between development and conservation. There are large poverty-stricken areas (PSAs) in China, which overlap highly with ecologically sensitive areas. China has made great efforts to alleviate poverty over the years. The coordinated relationship between the social economy and the environment in PSAs, however, remains under-recognized. This study developed a county-level index system encompassing the socioeconomic and environmental sectors of China's PSAs. The integrated indexes of the two sectors were developed to reveal the spatial-temporal socioeconomic and environmental patterns and coupling coordination degree (CCD) levels were calculated to assess the coordinated relationships between them. The CCD indicated the increasingly coordinated development of socioeconomic and environmental conditions in China's PSAs from 2000 to 2020. Meanwhile, although the socioeconomic index achieved considerable growth with a growth rate of 58.4%, the environmental index was mildly improved with a growth rate of 19.6%, instead of a reduction. PSAs still have a large gap in socioeconomic development compared to non-poor areas; however, PSAs perform better in environmental index. Overall, the increased coordinated development between the social economy and the environment from 2000 to 2020 can be attributed to China's long-term, large-scale, and targeted interventions in poverty reduction and environmental conservation. Further, benefiting from the geodiversity of China, we identified four poverty reduction models which include advantageously, sustained, periodic, and limited effective models, on the basis of CCD change patterns. The four models can provide valuable experience for the rest of the world in tackling similar trade-offs of poverty reduction and environmental challenges.

13.
PNAS Nexus ; 2(6): pgad172, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383022

RESUMO

The Tibetan Plateau holds the largest mass of snow and ice outside of the polar regions. The deposition of light-absorbing particles (LAPs) including mineral dust, black carbon and organic carbon and the resulting positive radiative forcing on snow (RFSLAPs) substantially contributes to glacier retreat. Yet how anthropogenic pollutant emissions affect Himalayan RFSLAPs through transboundary transport is currently not well known. The COVID-19 lockdown, resulting in a dramatic decline in human activities, offers a unique test to understand the transboundary mechanisms of RFSLAPs. This study employs multiple satellite data from the moderate resolution imaging spectroradiometer and ozone monitoring instrument, as well as a coupled atmosphere-chemistry-snow model, to reveal the high spatial heterogeneities in anthropogenic emissions-induced RFSLAPs across the Himalaya during the Indian lockdown in 2020. Our results show that the reduced anthropogenic pollutant emissions during the Indian lockdown were responsible for 71.6% of the reduction in RFSLAPs on the Himalaya in April 2020 compared to the same period in 2019. The contributions of the Indian lockdown-induced human emission reduction to the RFSLAPs decrease in the western, central, and eastern Himalayas were 46.8%, 81.1%, and 110.5%, respectively. The reduced RFSLAPs might have led to 27 Mt reduction in ice and snow melt over the Himalaya in April 2020. Our findings allude to the potential for mitigating rapid glacial threats by reducing anthropogenic pollutant emissions from economic activities.

14.
Sci Bull (Beijing) ; 68(22): 2849-2861, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37852823

RESUMO

Land cover changes (LCCs) affect surface temperatures at local scale through biophysical processes. However, previous observation-based studies mainly focused on the potential effects of virtual afforestation/deforestation using the space-for-time assumption, while the actual effects of all types of realistic LCCs are underexplored. Here, we adopted the space-and-time scheme and utilized extensive high-resolution (1-km) satellite observations to perform the first such assessment. We showed that, from 2006 to 2015, the average temperature in the areas with LCCs increased by 0.08 K globally, but varied significantly across latitudes, ranging from -0.05 to 0.18 K. Cropland expansions dominated summertime cooling effects in the northern mid-latitudes, whereas forest-related LCCs caused warming effects elsewhere. These effects accounted for up to 44.6% of overall concurrent warming, suggesting that LCC influences cannot be ignored. In addition, we revealed obvious asymmetries in the actual effects, i.e., LCCs with warming effects occurred more frequently, with stronger intensities, than LCCs with cooling effects. Even for the mutual changes between two covers in the same region, warming LCCs generally had larger magnitudes than their cooling counterparts due to asymmetric changes in transition fractions and driving variables. These novel findings, derived from the assessment of actual LCCs, provide more realistic implications for land management and climate adaptation policies.

15.
Nat Commun ; 14(1): 2089, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045863

RESUMO

The mid-depth ocean circulation is critically linked to actual changes in the long-term global climate system. However, in the past few decades, predictions based on ocean circulation models highlight the lack of data, knowledge, and long-term implications in climate change assessment. Here, using 842,421 observations produced by Argo floats from 2001-2020, and Lagrangian simulations, we show that only 3.8% of the mid-depth oceans, including part of the equatorial Pacific Ocean and the Antarctic Circumpolar Current, can be regarded as accurately modelled, while other regions exhibit significant underestimations in mean current velocity. Knowledge of ocean circulation is generally more complete in the low-latitude oceans but is especially poor in high latitude regions. Accordingly, we propose improvements in forecasting, model representation of stochasticity, and enhancement of observations of ocean currents. The study demonstrates that knowledge and model representations of global circulation are substantially compromised by inaccuracies of significant magnitude and direction, with important implications for modelled predictions of currents, temperature, carbon dioxide sequestration, and sea-level rise trends.

16.
PNAS Nexus ; 2(9): pgad308, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37780232

RESUMO

The northern hemisphere has experienced regional cooling, especially during the global warming hiatus (1998-2012) due to ocean energy redistribution. However, the lack of studies about the natural cooling effects hampers our understanding of vegetation responses to climate change. Using 15,125 ground phenological time series at 3,620 sites since the 1950s and 31-year satellite greenness observations (1982-2012) covering the warming hiatus period, we show a stronger response of leaf onset date (LOD) to natural cooling than to warming, i.e. the delay of LOD caused by 1°C cooling is larger than the advance of LOD with 1°C warming. This might be because cooling leads to larger chilling accumulation and heating requirements for leaf onset, but this non-symmetric LOD response is partially offset by warming-related drying. Moreover, spring greening magnitude, in terms of satellite-based greenness and productivity, is more sensitive to LOD changes in the warming area than in the cooling. These results highlight the importance of considering non-symmetric responses of spring greening to warming and cooling when predicting vegetation-climate feedbacks.

17.
Int J Biometeorol ; 56(2): 269-75, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21484539

RESUMO

The timing of phenological events is highly responsive to global environmental change, and shifts in a phenological phase can affect terrestrial ecosystems, agriculture and economics. We analyzed changes in phenology for the spring season in China that occurred between the 1960's and the 2000's using four methods: species-level observations, meta-analysis, satellite measurements and phenology modeling. Previous analyses have rarely been reported due to sparse observations. Our results suggest that spring in China has started on average 2.88 days earlier per decade in response to spring warming by -4.93 days per degree Celsius over the last three decades. The shift towards an earlier start of spring was faster in two forest biomes (spring started on average 3.90 days earlier per decade) than in three grassland biomes (spring started on average 0.95 day earlier per decade). This difference was probably due to increased precipitation impacts in the grassland biomes. Interannual variations in the start of spring were most likely attributed to annual fluctuations in spring temperature (∼40%) and in large-scale circulation anomalies (∼20%).


Assuntos
Mudança Climática , Desenvolvimento Vegetal , Estações do Ano , China , Comunicações Via Satélite
18.
Environ Pollut ; 295: 118605, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896223

RESUMO

The lack of emission data of major Cd-emitting enterprises has long limited the source apportionment of soil cadmium (Cd). Non-ferrous metal enterprises (NMEs) contribute the most Cd emissions in China in recent years. We estimated the cumulative Cd emission of 8750 NMEs across China through public data collection and material balance methods for the first time. The results showed that the total Cd emissions were estimated at 133,177 tons, of which 78.68% contributed by zinc primary smelting and mining. The emission hotspots are mainly concentrated in the south of the Yangtze River, such as Nanling Mountain areas, Nanpan River Basin, and Jincheng River Basin, as well as a few parts of the North and Northwest China. Then a significant positive spatial correlation was furtherly detected between NMEs and soil Cd, except for secondary smelting enterprises. Moreover, the hotspots of soil Cd pollution caused by NMEs were identified across China. By promoting the accounting calibrator from annual emission intensity of regional (mainly provincial) scale to the cumulative emission of site-specific enterprise in its entire life cycle, this study realized the finer description of the spatial heterogeneity of Cd emission from non-ferrous industry on a large scale and make it possible to refine the reliability of follow-up site-specific source apportionment, by introducing the emission intensity instead of the enterprise sites density. Finally, a modified approach for the regional source apportionment of soil pollution was proposed to obtain a more realistic and precise drawing. The results pointed out key NMEs subcategories and the affected hotspots which require continuous strengthening of Cd-related rectification. This methodological framework is expected to contribute to the precise management and differential sources control of Cd pollution and can be further extended to other pollutants for the precise targeting of key industries and hotspots during source pollution control in the future.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio , China , Mineração de Dados , Monitoramento Ambiental , Poluição Ambiental , Metais Pesados/análise , Reprodutibilidade dos Testes , Medição de Risco , Solo , Poluentes do Solo/análise
19.
PLoS One ; 17(9): e0275192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36170296

RESUMO

The rapid development of modern science nowadays makes it rather challenging to pick out valuable ideas from massive scientific literature. Existing widely-adopted citation-based metrics are not adequate for measuring how well the idea presented by a single publication is developed and whether it is worth following. Here, inspired by traditional X-ray imaging, which returns internal structure imaging of real objects along with corresponding structure analysis, we propose Scientific X-ray, a framework that quantifies the development degree and development potential for any scientific idea through an assembly of 'X-ray' scanning, visualization and parsing operated on the citation network associated with a target publication. We pick all 71,431 scientific articles of citation counts over 1,000 as high-impact target publications among totally 204,664,199 publications that cover 16 disciplines spanning from 1800 to 2021. Our proposed Scientific X-ray reproduces how an idea evolves from the very original target publication all the way to the up to date status via an extracted 'idea tree' that attempts to preserve the most representative idea flow structure underneath each citation network. Interestingly, we observe that while the citation counts of publications may increase unlimitedly, the maximum valid idea inheritance of those target publications, i.e., the valid depth of the idea tree, cannot exceed a limit of six hops, and the idea evolution structure of any arbitrary publication unexceptionally falls into six fixed patterns. Combined with a development potential index that we further design based on the extracted idea tree, Scientific X-ray can vividly tell how further a given idea presented by a given publication can still go from any well-established starting point. Scientific X-ray successfully identifies 40 out of 49 topics of Nobel prize as high-potential topics by their prize-winning papers in an average of nine years before the prizes are released. Various trials on articles of diverse topics also confirm the power of Scientific X-ray in digging out influential/promising ideas. Scientific X-ray is user-friendly to researchers with any level of expertise, thus providing important basis for grasping research trends, helping scientific policy-making and even promoting social development.


Assuntos
Indexação e Redação de Resumos , Distinções e Prêmios , Humanos , Prêmio Nobel , Publicações , Pesquisadores , Relatório de Pesquisa
20.
Geospat Health ; 17(s1)2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35735947

RESUMO

Coronavirus disease 2019 (COVID-19) has strongly impacted society since it was first reported in mainland China in December 2020. Understanding its spread and consequence is crucial to pandemic control, yet difficult to achieve because we deal with a complex context of social environment and variable human behaviour. However, few efforts have been made to comprehensively analyse the socio-economic influences on viral spread and how it promotes the infection numbers in a region. Here we investigated the effect of socio-economic factors and found a strong linear relationship between the gross domestic product (GDP) and the cumulative number of confirmed COVID-19 cases with a high value of R2 (between 0.57 and 0.88). Structural equation models were constructed to further analyse the social-economic interaction mechanism of the spread of COVID-19. The results show that the total effect of GDP (0.87) on viral spread exceeds that of population influx (0.58) in the central cities of mainland China and that the spread mainly occurred through its interplay with other factors, such as socio-economic development. This evidence can be generalized as socio-economic factors can accelerate the spread of any infectious disease in a megacity environment. Thus, the world is in urgent need of a new plan to prepare for current and future pandemics.


Assuntos
COVID-19 , COVID-19/epidemiologia , China/epidemiologia , Produto Interno Bruto , Humanos , Pandemias , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA