Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(5): 2068-2077, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38259216

RESUMO

Detection of nucleic acids from a single multiplexed and amplification-free test is critical for ensuring food safety, clinical diagnostics, and environmental monitoring. In this study, we introduced a mesophilic Argonaute protein from Clostridium butyricum (CbAgo), which exhibits nucleic acid endonuclease activity, to achieve a programmable, amplification-free system (PASS) for rapid nucleic acid quantification at ambient temperatures in one pot. By using CbAgo-mediated binding with specific guide DNA (gDNA) and subsequent targeted cleavage of wild-type target DNAs complementary to gDNA, PASS can detect multiple foodborne pathogen DNA (<102 CFU/mL) simultaneously. The fluorescence signals were then transferred to polydisperse emulsions and analyzed by using deep learning. This simplifies the process and increases the suitability of polydisperse emulsions compared to traditional digital PCR, which requires homogeneous droplets for accurate detection. We believe that PASS has the potential to become a next-generation point-of-care digital nucleic acid detection method.


Assuntos
Técnicas Biossensoriais , Aprendizado Profundo , Ácidos Nucleicos , Proteínas Argonautas/metabolismo , DNA/análise , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos
2.
Appl Opt ; 62(29): 7844-7851, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855495

RESUMO

In the development of the Cold Atom Physics Research Rack (CAPR) on board the Chinese Space Station, the laser system plays a critical role in preparing the all-optical 87 R b Bose-Einstein condensates (BECs). An all-fiber laser system has been developed for CAPR to provide the required optical fields for atom interaction and to maintain the beam pointing in long-term operation. The laser system integrates a 780 nm fiber laser system and an all-fiber optical control module for sub-Doppler cooling, as well as an all-fiber 1064 nm laser system for evaporative cooling. The high-power, single-frequency 780 nm lasers are achieved through rare-Earth doped fiber amplification, fiber frequency-doubling, and frequency stabilization technology. The all-fiber optical control module divides the output of the 780 nm laser system into 15 channels and regulates them for cooling, trapping, and probing atoms. Moreover, the power consistency of each pair of cooling beams is ensured by three power tracking modules, which is a prerequisite for maintaining stable MOT and molasses. A high-power, compact, controlled-flexible, and highly stable l064 nm all-fiber laser system employing two-stage ytterbium-doped fiber amplifier (YDFA) technology has been designed for evaporative cooling in the optical dipole trap (ODT). Finally, an all-optical 87 R b BEC is realized with this all-fiber laser system, which provides an alternative solution for trapping and manipulating ultra-cold atoms in challenging environmental conditions.

3.
Biochem Genet ; 61(2): 565-577, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36002666

RESUMO

Age-related cataract (ARC) is one of the most common chronic diseases. Circular RNA (circ)_HIPK3 is reported to be involved in the advancement of ARC, but its molecular mechanism has not been clarified. Our study provides a new perspective on the clinical treatment of ARC. Our data showed that the expression levels of circ_HIPK3 and histone deacetylase 4 (HDAC4) were downregulated, while microRNA (miR)-495-3p level was increased in ARC tissues and H2O2-induced SRA01/04 cells. Functional experiments showed that circ_HIPK3 and HDAC4 overexpression could inhibit H2O2-induced lens epithelial cell apoptosis and fibrosis. In terms of mechanism, we found that circ_HIPK3 could sponge miR-495-3p, miR-495-3p could target HDAC4. Besides, we confirmed that circ_HIPK3 sponged miR-495-3p to positively regulate HDAC4. Additionally, miR-495-3p overexpression or HDAC4 knockdown reversed the inhibition effect of circ_HIPK3 on H2O2-induced lens epithelial cell injury. In conclusion, our data showed that circ_HIPK3 suppressed H2O2-induced lens epithelial cell injury by regulating miR-495-3p/HDAC4 axis.


Assuntos
Catarata , MicroRNAs , Humanos , Peróxido de Hidrogênio/farmacologia , Células Epiteliais , Apoptose , Histona Desacetilases/genética , RNA Circular/genética , Catarata/genética , MicroRNAs/genética , Proliferação de Células , Proteínas Serina-Treonina Quinases , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Repressoras/genética
4.
Appl Opt ; 54(9): 2470-6, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25968536

RESUMO

Lidar systems have played an important role in space rendezvous and docking (RVD). A new type of scanning lidar is developed using a high-repetition-rate pulsed fiber laser and a position detector. It will be a candidate for autonomous space RVD between two spacecrafts. The lidar can search and track cooperative targets in a large region without artificial guidance. The lidar's operational range spans from 18 m to 20 km, and the relative angle between two aircrafts can be measured with high accuracy. A novel fiber laser with tunable pulse energy and repetition rate is developed to meet the wide dynamic detection range of the lidar. This paper presents the lidar system's composition, performance, and experimental results in detail.

5.
Talanta ; 258: 124357, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870152

RESUMO

Aflatoxin M1 (AFM1) contamination poses a serious threat to human health globally. Hence, it is necessary to develop reliable and ultrasensitive methods for the determination of AFM1 residue in food products at low levels. In this study, a novel polystyrene microsphere-mediated optical sensing (PSM-OS) strategy was constructed to solve the problems of low sensitivity and susceptibility to interference from the matrix in AFM1 determination. Polystyrene (PS) microspheres have the advantages of low cost, high stability, and controllable particle size. They can be useful optical signal probes for qualitative and quantitative analyses attributed to the fact that they have strong ultraviolet-visible (UV-vis) characteristic absorption peaks. Briefly, magnetic nanoparticles were modified with the complex of bovine serum protein and AFM1 (MNP150-BSA-AFM1), and biotinylated antibodies of AFM1 (AFM1-Ab-Bio). Meanwhile, PS microspheres were also functionalized with streptavidin (SA-PS950). In the presence of AFM1, a competitive immune reaction was triggered leading to the changes in AFM1-Ab-Bio concentrations on the surface of MNP150-BSA-AFM1. The complex of MNP150-BSA-AFM1-Ab-Bio binds with SA-PS950 to form the immune complexes due to the special binding of biotin and streptavidin. The remaining SA-PS950 in the supernatant was determined by UV-Vis spectrophotometer after magnetic separation, which positively correlated with the concentration of AFM1. This strategy allows for ultrasensitive determination of AFM1 with limits of detection as low as 3.2 pg/mL. It was also successfully validated for AFM1 determination in milk samples, and a high consistency was found with the chemiluminescence immunoassay. Overall, the proposed PSM-OS strategy can be used for the rapid, ultrasensitive, and convenient determination of AFM1, as well as other biochemical analytes.


Assuntos
Aflatoxina M1 , Leite , Humanos , Animais , Leite/química , Aflatoxina M1/análise , Microesferas , Poliestirenos/análise , Estreptavidina , Contaminação de Alimentos/análise
6.
Bioengineered ; 12(1): 8953-8964, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34652259

RESUMO

Apoptosis of lens epithelial cells contributed to the formation of age-related cataract (ARC), and previous data revealed that circular RNA (circRNA) was responsible for the underneath mechanism. The study was organized to explore the role of circular RNA erythrocyte membrane protein band 4.1 (circ_EPB41) in ultraviolet (UV) irradiation-induced apoptosis of lens epithelial cells. SRA01/04 cells were irradiated with UV to mimic the ARC cell model. The RNA levels of circ_EPB41, microRNA-24-3p (miR-24-3p), and 3'(2'), 5'-bisphosphate nucleotidase 1 (BPNT1) were detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blot. 5-Ethynyl-29-deoxyuridine, 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide and DNA content quantitation assays were performed to investigate cell proliferation. Flow cytometry was conducted to analyze cell apoptosis. Dual-luciferase reporter assay was implemented to confirm the interaction among circ_EPB41, miR-24-3p, and BPNT1. Our data showed that circ_EPB41 and BPNT1 expression were downregulated in ARC tissues and UV-irradiated SRA01/04 cells as compared with normal anterior lens capsules and untreated SRA01/04 cells. Circ_EPB41 overexpression ameliorated the effects of UV irradiation on the proliferation and apoptosis of SRA01/04 cells. Besides, miR-24-3p, a target miRNA of circ_EPB41, attenuated circ_EPB41 introduction-mediated proliferation, and apoptosis of UV-irradiated SRA01/04 cells. MiR-24-3p regulated UV irradiation-induced effects by targeting BPNT1. Importantly, it was found that circ_EPB41 stimulated BPNT1 production by miR-24-3p. Taken together, the enforced expression of circ_EPB41 ameliorated UV irradiation-induced apoptosis of lens epithelial cells by miR-24-3p/BPNT1 pathway, providing us with a potential target for the therapy of UV-caused ARC.


Assuntos
Catarata/patologia , Proteínas do Citoesqueleto/genética , Células Epiteliais/patologia , Cristalino/patologia , Proteínas de Membrana/genética , MicroRNAs/genética , Nucleotidases/metabolismo , RNA Circular/genética , Idoso , Apoptose , Catarata/genética , Catarata/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Humanos , Cristalino/metabolismo , Cristalino/efeitos da radiação , Pessoa de Meia-Idade , Nucleotidases/genética , Raios Ultravioleta
7.
ACS Omega ; 3(9): 10638-10646, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459184

RESUMO

Demands related to clean energy and environmental protection promote the development of novel supramolecular assemblies for photocatalysis. Because of the distinctive aggregation behaviors, bolaamphiphiles with two hydrophilic end groups could be theoretically the right candidates for the fabrication of high-performance photocatalysis. However, photocatalytic applications based on bolaamphiphilic assemblies were still rarely investigated. Especially, the relationship between diverse assembled nanostructures and the properties for different applications is urgently needed to be studied. Herein, we demonstrate that using the hierarchical assembly of bolaamphiphiles could correctly induce the porphyrin supramolecular architectures with much better photocatalytic performances than the aggregations containing 450 times of the porphyrin molecules, even though both molecular structures as well as the J-aggregations of porphyrin building blocks are same in two different systems. Thus, the co-assembly of l-phenylalanine terminated bolaamphiphile (Bola-F) and the porphyrin containing four hydroxyl groups (tetrakis-5,10,15,20-(4-hydroxyphenyl)porphyrin) can form microtube in methanol and forms fibers/spheres in methanol/water mixture. For catalyzing the photodegradation of rhodamine B, the small amount of J-aggregated porphyrin within Bola-F microtubes show much better photocatalytic performance comparing with that of huge porphyrin J-aggregations in fibers/spheres. The supramolecular assemblies as well as the photocatalysis were thoroughly characterized by different spectroscopies and electron microscopy. It is demonstrated that the co-assembly with bolaamphiphiles could inhibit the energy transfer of porphyrin aggregation and subsequently benefit the electron transfer and corresponding photocatalysis under photo-irradiation. This work is not only useful for further understanding the hierarchically supramolecular assembly but also provides a new strategy for making novel functional supramolecular architectures based on the assembly of bolaamphiphiles and porphyrins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA