Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025969

RESUMO

Studies of molecular and cellular functions of small-molecule inhibitors in cancer treatment, eliciting effects by targeting genome and epigenome associated proteins, requires measurement of drug-target engagement in single-cell resolution. Here we present EpiChem for in situ single-cell joint mapping of small molecules and multimodal epigenomic landscape. We demonstrate single-cell co-assays of three small molecules together with histone modifications, chromatin accessibility or target proteins in human colorectal cancer (CRC) organoids. Integrated multimodal analysis reveals diverse drug interactions in the context of chromatin states within heterogeneous CRC organoids. We further reveal drug genomic binding dynamics and adaptive epigenome across cell types after small-molecule drug treatment in CRC organoids. This method provides a unique tool to exploit the mechanisms of cell type-specific drug actions.

2.
Stem Cell Reports ; 19(1): 126-140, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38134924

RESUMO

The spatial localization of RNA within cells is closely related to its function and also involved in cell fate determination. However, the atlas of RNA distribution within cells and dynamic changes during the developmental process are largely unknown. In this study, five subcellular components, including cytoplasmic extract, membrane extract, soluble nuclear extract, chromatin-bound nuclear extract, and cytoskeletal extract, were isolated and the rules of subcellular RNA distribution in human embryonic stem cells (hESCs) and its change during hESC differentiation are summarized for the first time. The overall distribution patterns of coding and non-coding RNAs are revealed. Interestingly, some developmental genes are found to be transcribed but confined to the chromatin in undifferentiated hESC. Unexpectedly, alternative splicing and polyadenylation endow spatial heterogeneity among different isoforms of the same gene. Finally, the dynamic pattern of RNA distribution during hESC differentiation is characterized, which provides new clues for a comprehensive understanding hESC pluripotency and differentiation.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias/metabolismo , RNA/metabolismo , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA