Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598498

RESUMO

Metal ions play a dual role in biological systems. Although they actively participate in vital life processes, they may contribute to protein aggregation and misfolding and thus contribute to development of diseases and other pathologies. In nanofabrication, metal ions mediate the formation of nanostructures with diverse properties. Here, we investigated the self-assembly of α-lactalbumin into nanotubes induced by coordination with metal ions, screened among the series Mn2+, Co2+, Ni2+, Zn2+, Cd2+, and Au3+. Our results revealed that the affinity of metal ions toward hydrolyzed α-lactalbumin peptides not only impacts the kinetics of nanotube formation but also influences their length and rigidity. These findings expand our understanding of supramolecular assembly processes in protein-based materials and pave the way for designing novel materials such as metallogels in biochip and biosensor applications.

2.
Nano Lett ; 24(10): 2980-2988, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38311846

RESUMO

The emergence of antibiotic and antifungal resistant microorganisms represents nowadays a major public health issue that might push humanity into a post-antibiotic/antifungal era. One of the approaches to avoid such a catastrophe is to advance rapid antibiotic and antifungal susceptibility tests. In this study, we present a compact, optical fiber-based nanomotion sensor to achieve this goal by monitoring the dynamic nanoscale oscillation of a cantilever related to microorganism viability. High detection sensitivity was achieved that was attributed to the flexible two-photon polymerized cantilever with a spring constant of 0.3 N/m. This nanomotion device showed an excellent performance in the susceptibility tests of Escherichia coli and Candida albicans with a fast response in a time frame of minutes. As a proof-of-concept, with the simplicity of use and the potential of parallelization, our innovative sensor is anticipated to be an interesting candidate for future rapid antibiotic and antifungal susceptibility tests and other biomedical applications.


Assuntos
Antibacterianos , Antifúngicos , Fibras Ópticas , Testes de Sensibilidade Microbiana , Candida albicans , Escherichia coli
3.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G216-G227, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193197

RESUMO

Ulcerative colitis (UC) is an inflammatory disease with abdominal pain, diarrhea, and bloody stool as the main symptoms. Several studies have confirmed that polysaccharides are effective against UC. It is commonly accepted that the traditional benefits of Radix Codonopsis can be attributed to its polysaccharide contents, and inulin-type fructan CP-A is the main active monomer in the polysaccharide components. Herein, we established a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced UC rat model and lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) to investigate the effect of CP-A on UC. Untargeted metabolomics studies were conducted to identify differential metabolites using ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS) and enrich metabolic pathways in rat serum. The in vivo assays demonstrated that CP-A reduces colonic macroscopic injury, disease activity index (DAI), histopathological score, interleukin (IL)-8, and tumor necrosis factor-α (TNF-α) levels, as well as the expression of intercellular adhesion molecules. On the other hand, CP-A increases IL-10 and transforming growth factor-ß (TGF-ß) levels. The in vitro experiments indicated that CP-A treatment could reduce nitric oxide (NO) and IL-1ß after LPS stimulation. The metabolomics results suggested that CP-A therapy for UC may be related to the mammalian target of rapamycin (mTOR) signaling pathway. The in vitro and in vivo validation of the pathway showed similar results, indicating that CP-A alleviates UC by preventing the activation of mTOR/p70S6K signaling pathway. These findings offer a fresh approach to treating UC and a theoretical foundation for the future advancement of CP-A.NEW & NOTEWORTHY We report that an inulin-type fructan from Codonopsis pilosula CP-A exhibits a therapeutic effect on experimental colitis. Its mechanism may be to alleviate intestinal inflammation by preventing the activation of mammalian target of rapamycin (mTOR)/p70S6K signaling pathway. These findings offer a fresh approach to treating ulcerative colitis (UC) and a theoretical foundation for the future advancement of CP-A.


Assuntos
Codonopsis , Colite Ulcerativa , Colite , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Inulina/farmacologia , Frutanos/efeitos adversos , Frutanos/química , Codonopsis/química , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Ácidos Sulfônicos/efeitos adversos , Lipopolissacarídeos , Polissacarídeos , Serina-Treonina Quinases TOR , Colite/induzido quimicamente , Colite/tratamento farmacológico , Modelos Animais de Doenças , Mamíferos
4.
Sensors (Basel) ; 24(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474906

RESUMO

This paper proposes a wind-speed-adaptive resonant piezoelectric energy harvester for offshore wind energy collection (A-PEH). The device incorporates a coil spring structure, which sets the maximum threshold of the output rotational frequency, allowing the A-PEH to maintain a stable output rotational frequency over a broader range of wind speeds. When the maximum output excitation frequency of the A-PEH falls within the sub-resonant range of the piezoelectric beam, the device becomes wind-speed-adaptive, enabling it to operate in a sub-resonant state over a wider range of wind speeds. Offshore winds exhibit an annual average speed exceeding 5.5 m/s with significant variability. Drawing from the characteristics of offshore winds, a prototype of the A-PEH was fabricated. The experimental findings reveal that in wind speed environments, the device has a startup wind speed of 4 m/s, and operates in a sub-resonant state when the wind speed exceeds 6 m/s. At this point, the A-PEH achieves a maximum open-circuit voltage of 40 V and an average power of 0.64 mW. The wind-speed-adaptive capability of the A-PEH enhances its ability to harness offshore wind energy, showcasing its potential applications in offshore wind environments.

5.
Nano Lett ; 23(21): 9912-9919, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37856435

RESUMO

Neurodegenerative diseases are characterized by the presence of cross-ß-sheet amyloid fibrils and a rich mesoscopic polymorphism, requiring noninvasive detection with high fidelity. Here, we introduce a methodology that can probe via a sensitive synthetic nanopore the complex polymorphism of amyloid fibrils by an automated and fast screening protocol. Statistically analyzing the translocation events on two model amyloid systems derived from ß-lactoglobulin and lysozyme allows extracting the cross-sectional configuration of hydrated amyloid fibrils from current block amplitude and correlating dwell time with fibril length. These findings are consistent with the amyloid polymorphs observed in solution by atomic force microscopy. Furthermore, the ionic current signal of a single translocation event can reveal abnormally aggregated conformations of amyloid fibrils without potential artifacts associated with microscopy methods. This study introduces an effective approach to physically discriminating and separating amyloid and may serve in the rapid diagnosis of early aggregating pathological amyloidosis.


Assuntos
Nanoporos , Estudos Transversais , Amiloide , Microscopia de Força Atômica
6.
Biomacromolecules ; 24(1): 471-480, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36548941

RESUMO

Rationally designing microstructures of soft hydrogels for specific biological functionalization is a challenge in tissue engineering applications. A novel and affordable soft hydrogel scaffold is constructed here by incorporating polyphenol modules with lysozyme amyloid fibrils (Lys AFs) via non-covalent self-assembly. Embedded polyphenols not only trigger hydrogel formation but also determine gel behavior by regulating the polyphenol gallol density and complex ratio. The feasibility of using a polyphenol-Lys AF hydrogel as a biocompatible cell scaffold, which is conducive to cell proliferation and spreading, is also shown. Notably, introducing polyphenols imparts the corresponding hydrogels a superior cell bioadhesive efficiency without further biofunctional decoration and thus may be successfully employed in both healthy and cancer cell lines. Confocal laser scanning microscopy also reveals that the highly expressed integrin-mediated focal adhesions form due to stimulation of the polyphenol-AF composite hydrogel, direct cell adhesion, proliferation, and spreading. Overall, this work constitutes a significant step forward in creating highly adhesive tissue culture platforms for in vitro culture of different cell types and may greatly expand prospects for future biomaterial design and development.


Assuntos
Adesivos , Hidrogéis , Hidrogéis/farmacologia , Hidrogéis/química , Polifenóis/farmacologia , Polifenóis/química , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual , Amiloide/química , Proteínas Amiloidogênicas
7.
Appl Opt ; 61(19): 5538-5544, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255779

RESUMO

Balanced detection, which is becoming increasingly essential for wireless communication and optical fiber communication, has been extensively studied in recent years. However, the relationships between the sensitivity and the other parameters have not yet been comprehensively ascertained. In this work, the relationship between the sensitivity and the local oscillator power Plo, consistency parameter Δα, and beam splitting ratio ε in balanced detection is explored through numerical and communication system simulations. If ε decreases, the sensitivity increases, and the corresponding Plo decreases. With the increase or decrease in Δα, ε corresponding to the minimum sensitivity shifts toward the right or left, respectively. This shift increases with the increase in the absolute value of Δα, and the minimum value of the sensitivity increases. When the absolute values of Δα are equal, their curves are almost symmetrical. As ε approaches 0.5, the tolerable maximum of Plo becomes higher. At any instant, the average value of the quantum efficiency of the two photodiodes is more critical than the maximum quantum efficiency and balance. This work facilitates thorough understanding of the sensitivity of balanced detection, which can be beneficial for future optical communication design.

8.
Angew Chem Int Ed Engl ; 61(11): e202116634, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35040240

RESUMO

Electrocatalysis offers great promise for water purification but is limited by low active area and high uncontrollability of electrocatalysts. To overcome these constraints, we propose hybrid bulk electrodes by synthesizing and binding a Pd nanocatalyst (nano-Pd) to the electrodes via amyloid fibrils (AFs). The AFs template is effective for controlling the nucleation, growth, and assembly of nano-Pd on the electrode. In addition, the three-dimensional hierarchically porous nanostructure of AFs is beneficial for loading high-density nano-Pd with a large active area. The novel hybrid cathodes exhibit superior electroreduction performance for the detoxification of hexavalent chromium (Cr6+ ), 4-chlorophenol, and trichloroacetic acid in wastewater and drinking water. This study provides a proof-of-concept design of an AFs-templated nano-Pd-based hybrid electrode, which constitutes a paradigm shift in electrocatalytic water purification, and broadens the horizon of its potential engineered applications.


Assuntos
Amiloide/química , Nanopartículas Metálicas/química , Paládio/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água , Catálise , Clorofenóis/química , Clorofenóis/isolamento & purificação , Cromo/química , Cromo/isolamento & purificação , Eletricidade , Eletrodos , Ácido Tricloroacético/química , Ácido Tricloroacético/isolamento & purificação , Poluentes Químicos da Água/química
9.
Opt Express ; 28(10): 14263-14270, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403468

RESUMO

A novel fiber-interface directional waveguide coupler was inscribed on the surface of a coreless fiber by femtosecond laser, and was successfully applied to highly sensitive refractive index (RI) measurements. The primary arm was first inscribed to couple light from a lead-in single mode fiber to the fiber interface, then back to a lead-out single mode fiber. A side arm was inscribed parallel and in close proximity to the primary arm. Light propagating in the primary arm could then be efficiently coupled into the side arm when a phase-matching condition was met, which produced a dramatic spectral dip at the coupling wavelength. The proposed device achieved a sensitivity as high as ∼8249 nm/RIU over an RI range of 1.44-1.45, due to strong evanescent fields excited in fiber-interface waveguides. The proposed in-fiber directional coupler exhibits high mechanical strength, a compact configuration, and excellent RI sensitivity. As such, it has significant potential for practical applications in biochemical sensing.

10.
Nano Lett ; 19(11): 8278-8286, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31650844

RESUMO

Chemical characterization at the nanoscale is of significant importance for many applications in physics, analytical chemistry, material science, and biology. Despite the intensive studies in the infrared range, high-spatial-resolution and high-sensitivity imaging for compositional identification in the visible range is rarely exploited. In this work, we present a gap-plasmon-enhanced imaging approach based on photothermal-induced resonance (PTIR) for nanoscale chemical identification. With this approach, we experimentally obtained a high spatial resolution of ∼5 nm for rhodamine nanohill characterization and achieved monolayer sensitivity for mapping the single-layer chlorophyll-a islands with the thickness of only 1.9 nm. We also successfully characterized amyloid fibrils stained with methylene blue dye, indicating that this methodology can be also utilized for identification of the radiation-insensitive macromolecules. We believe that our proposed high-performance visible PTIR system can be used to broaden the applications of nanoscale chemical identification ranging from nanomaterial to life science areas.

11.
Small ; 15(4): e1803870, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30488616

RESUMO

Here, a soft robotic microgripper is presented that consists of a smart actuated microgel connected to a spatially photopatterned multifunctional base. When pressed onto a target object, the microgel component conforms to its shape, thus providing a simple and adaptive solution for versatile micromanipulation. Without the need for active visual or force feedback, objects of widely varying mechanical and surface properties are reliably gripped through a combination of geometrical interlocking mechanisms instantiated by reversible shape-memory and thermal responsive swelling of the microgel. The gripper applies holding forces exceeding 400 µN, which is high enough to lift loads 1000 times heavier than the microgel. An untethered version of the gripper is developed by remotely controlling the position using magnetic actuation and the contractile state of the microgel using plasmonic absorption. Gentle yet stable robotic manipulation of biological samples under physiological conditions opens up possibilities for high-throughput interrogation and minimally invasive interventions.

12.
Opt Express ; 26(10): 13311-13321, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801356

RESUMO

A new method is proposed and demonstrated for fabricating phase-shifted fiber Bragg gratings (FBGs) using a variable-velocity scanning UV laser beam in combination with a shielded phase mask. The transmission properties of phase-shifted FBGs were analyzed based on coupled-mode theory and a transfer matrix method. The grating is divided into three parts to allow for easier analysis of FBG properties. These segments included a uniform FBG1 and FBG2 which were separated by a shielded section. A novel phase-shifted FBG was fabricated using this method, in which the refractive indices of FBG1 and FBG2 were different. Transmission properties of these phase-shifted FBGs were simulated numerically using MATLAB, and the experimental results and simulated results are in good agreement. In addition to the length and effective refractive index of the shielded section, the phase shift value of a phase-shifted FBG was also found to be dependent on the lengths and effective refractive indices of FBG1 and FBG2. Moreover, we predicted that changing the scanning velocity for fabricating FBG2 would adjust phase shift value, which exhibits a positive linear relationship with the scanning velocity. These results can provide guidelines for fabricating any phase shift value FBGs. This technique is simple, convenient, and may be developed further for use in fabricating novel tunable fiber filters or DFB fiber lasers.

13.
Mediators Inflamm ; 2017: 1089028, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28811678

RESUMO

According to the GC-MS analysis, compositional variation was observed between samples of patchouli oil, of which an unknown compound identified as patchoulene epoxide (PAO) was found only in the long-stored oil, whose biological activity still remains unknown. Therefore, the present study aimed to evaluate the potential anti-inflammatory activity with three in vivo inflammatory models: xylene-induced ear edema, acetic acid-induced vascular permeability, and carrageenan-induced paw edema. Further investigation into its underlying mechanism on carrageenan-induced paw edema was conducted. Results demonstrated that PAO significantly inhibited the ear edema induced by xylene, lowered vascular permeability induced by acetic acid and decreased the paw edema induced by carrageenan. Moreover, PAO markedly decreased levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO), but increased levels of interleukin-4 (IL-4) and interleukin-10 (IL-10). PAO was also shown to significantly downregulate the protein and mRNA expressions of cyclooxygenase-2 (COX-2) and inducible nitric-oxide synthase (iNOS). Western blot analysis revealed that PAO remarkably inhibited p50 and p65 translocation from the cytosol to the nucleus by suppressing IKKß and IκBα phosphorylation. In conclusion, PAO exhibited potent anti-inflammatory activity probably by suppressing the activation of iNOS, COX-2 and NF-κB signaling pathways.


Assuntos
Compostos de Epóxi/uso terapêutico , Inflamação/tratamento farmacológico , Óleos de Plantas/química , Pogostemon/química , Animais , Carragenina/toxicidade , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Edema/induzido quimicamente , Edema/tratamento farmacológico , Compostos de Epóxi/química , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Inflamação/induzido quimicamente , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
J Asian Nat Prod Res ; 19(2): 172-175, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27243631

RESUMO

Pogostone, isolated from Pogostemon cablin, has many biological activities such as potential antibacterial, anticandida, and antifungal. Traditional extraction leads to low output of PO about 17.6 mg/kg from Herba Pogostemonis. The previous literature had reported a synthetic study and the yield had reached 4.48% with strictly controlled reaction conditions. The two methods above cannot meet the large demand of PO; we report a new synthesis method. 4-hydroxy-6-methyl-2-pyrone (1) was added in toluene, with the existence of acylation catalyst 4-dimethylaminopyridine (DMAP), 4-methylvaleric acid (2), and condensing agent dicyclohexylcarbodiimide (DCC), PO was synthesized after the combination of 3-carbon of (1) with 1-OH of (2) in the acylation reaction. The purity had reached 98%, determined by HPLC. The structure was confirmed by spectroscopic methods including infrared, electron ionization mass spectrometry, and nuclear magnetic resonance spectroscopy. PO was totally synthesized in one step including cyclization, with total yield of 27.2%.


Assuntos
Antineoplásicos Fitogênicos/síntese química , Óleos Voláteis/síntese química , Pogostemon/química , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Cromatografia Líquida de Alta Pressão , Ensaios de Seleção de Medicamentos Antitumorais , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Óleos Voláteis/química , Pironas/química
15.
Opt Express ; 23(3): 1906-11, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836063

RESUMO

We investigated a novel and ultracompact polymer-capped Fabry-Perot interferometer, which is based on a polymer capped on the endface of a single mode fiber (SMF). The proposed Fabry-Perot interferometer has advantages of easy fabrication, low cost, and high sensitivity. The variation of the Fabry-Perot cavity length can be easily controlled by using the motors of a normal arc fusion splicer. Moreover, the enhanced mechanical strength of the Fabry-Perot interferometer makes it suitable for high sensitivity pressure and temperature sensing in harsh environments. The proposed interferometer exhibits a wavelength shift of the interference fringes that corresponds to a temperature sensitivity of 249 pm/°C and a pressure sensitivity of 1130 pm/MPa, respectively, around the wavelength of 1560 nm.

16.
Opt Express ; 23(5): 6673-8, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836884

RESUMO

A Mach-Zehnder interferometer based on a twin-core fiber was proposed and experimentally demonstrated for gas pressure measurements. The in-line Mach-Zehnder interferometer was fabricated by splicing a short section of twin-core fiber between two single mode fibers. A micro-channel was created to form an interferometer arm by use of a femtosecond laser to drill through one core of the twin-core fiber. The other core of the fiber was remained as the reference arm. Such a Mach-Zehnder interferometer exhibited a high gas pressure sensitivity of -9.6 nm/MPa and a low temperature cross-sensitivity of 4.4 KPa/°C. Moreover, ultra-compact device size and all-fiber configuration make it very suitable for highly-sensitive gas pressure sensing in harsh environments.

17.
Opt Express ; 23(11): 14596-602, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072819

RESUMO

We demonstrated a compact and highly-sensitive curvature sensor based on a Mach-Zehnder interferometer created in a photonic crystal fiber. Such a Mach-Zehnder interferometer consisted of a peanut-like section and an abrupt taper achieved by use of an optimized electrical arc discharge technique, where only one dominating cladding mode was excited and interfered with the fundamental mode. The unique structure exhibited a high curvature sensitivity of 50.5 nm/m-1 within a range from 0 to 2.8 m-1, which made it suitable for high-sensitivity curvature sensing in harsh environments. Moreover, it also exhibited a temperature sensitivity of 11.7 pm/°C.


Assuntos
Interferometria/métodos , Fibras Ópticas , Simulação por Computador , Cristalização , Microscopia Eletrônica de Varredura , Análise Numérica Assistida por Computador , Fótons
18.
Opt Lett ; 40(9): 2008-11, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25927770

RESUMO

We demonstrate a highly birefringent phase-shifted fiber Bragg grating (PS-FBG) inscribed in H2-free fiber with a near-infrared femtosecond Gaussian laser beam and uniform phase mask. The PS-FBG was fabricated from an ordinary fiber Bragg grating (FBG) in a case in which overexposure was applied. The spectral evolution from FBG to FS-FBG was observed experimentally with a decrease in transmission loss at dip wavelength, blueshift of the dip wavelength, decrease in the cladding mode loss, and an increase in the insertion loss. A high birefringence was demonstrated experimentally with the existence of PS-FBG only in TM polarization. The formation of the PS-FBG may be due to a negative index change induced by the higher intensity in the center of the Gaussian laser beam.

19.
Molecules ; 20(8): 13725-39, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26225952

RESUMO

In the present study, two new phenolic compounds 1 and 11, a pair of lignan isomers 12 and 13 with their absolute configurations established for the first time, were isolated from the ethanol extract of the roots of Rhodiola crenulata, together with 13 known phenolic compounds, and their structures were elucidated via NMR, HRESIMS, UV, IR and CD analyses. All the isolated compounds were evaluated for their in vitro antioxidant activities using the 2,2-diphenyl-1-picryhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays. Ten of them exhibited significant antioxidant activities compared to ascorbic acid. Furthermore, the inducibilities of the isolated compounds to IFN-γ production were also assessed. Compounds 1, 8, 9, 12, 13, 14 and 15 could moderately stimulate IFN-γ expression.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Indutores de Interferon/farmacologia , Interferon gama/biossíntese , Extratos Vegetais/biossíntese , Raízes de Plantas/química , Rhodiola/química , Baço/metabolismo , Animais , Células Cultivadas , Etanol/química , Sequestradores de Radicais Livres/química , Indutores de Interferon/química , Camundongos , Camundongos Endogâmicos BALB C , Baço/citologia
20.
Zhongguo Zhong Yao Za Zhi ; 40(13): 2629-33, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26697690

RESUMO

Nuclear magnetic resonance (1H-NMR) fingerprint of Rhodiola rosea medicinal materials was established, and used to distinguish the quality of raw materials from different sources. Pulse sequence for water peak inhibition was employed to acquire 1H-NMR spectra with the temperature at 298 K and spectrometer frequency of 400.13 MHz. Through subsection integral method, the obtained NMR data was subjected to similarity analysis and principal component analysis (PCA). 10 batches raw materials of Rhodiola rosea from different origins were successfully distinguished by PCA. The statistical results indicated that rhodiola glucoside, butyl alcohol, maleic acid and alanine were the main differential ingredients. This method provides an auxiliary method of Chinese quality approach to evaluate the quality of Rhodiola crenulata without using natural reference substances.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Rizoma/química , Rhodiola/química , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA