Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Small ; 19(46): e2304536, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37475494

RESUMO

Oxygen-containing functional groups have high potential to excite polarization loss. The nature and mechanism of the polarization loss brought on by oxygen-containing functional groups, however, remain unclear. In this study, metal-organic framework precursors are in situ pyrolyzed to produce ultrathin carbon nanosheets (UCS) that are abundant in oxygen functional groups. By altering the pyrolysis temperature, the type and concentration of functional groups are altered to produce good microwave absorption capabilities. It is demonstrated that the main processes of electromagnetic loss are polarization caused by "field effects and induced effects" brought on by strongly polar ester functional groups. Moreover, links between various oxygen functional groups and structural flaws are established, and their respective contributions to polarization are sharply separated. The sample with the highest ester group content ultimately achieves an effective absorption bandwidth of 6.47 GHz at a pyrolysis temperature of 800°C. This research fills a theoretical hole in the frequently overlooked polarization mechanism in the microwave band by defining the key polarization parameters in chaotic multiple dipole systems and, in particular, redefining the significance of ester groups.

2.
Small ; 19(45): e2302633, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37232212

RESUMO

Correlating metal-organic framework (MOF) synthesis processes and microwave absorption (MA) enhancement mechanisms is a pioneer project. Nevertheless, the correlation process still relies mainly on empirical doctrine, which hardly corresponds to the specific mechanism of the effect on the dielectric properties. Hereby, after the strategy of modulation of protonation engineering and solvothermal temperature in the synthesis route, the obtained sheet-like self-assembled nanoflowers were constructed. Porous structures with multiple heterointerfaces, abundant defects, and vacancies are obtained by controlled design of the synthesis procedure. The rearrangement of charges and enhanced polarization can be promoted. The designed electromagnetic properties and special nano-microstructures of functional materials have significant impact on their electromagnetic wave energy conversion effects. As a consequence, the MA performance of the samples has been enhanced toward broadband absorption (6.07 GHz), low thickness (2.0 mm), low filling (20%), and efficient loss (-25 dB), as well as being suitable for practical environmental applications. This work establishes the connection between the MOF-derived materials synthesis process and the MA enhancement mechanism, which provides insight into various microscopic microwave loss mechanisms.

3.
Opt Express ; 29(21): 34735-34747, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809256

RESUMO

Electromagnetic (EM) wave absorber with broad and robust absorption performance over wide incident angle range is persistently desired in specific applications. In this work, we propose and demonstrate a broadband and wide-angle metamaterial absorber (MA) based on a hybrid of stereo spoof surface plasmonic polariton (SSPP) structure and planar resistive metasurface. At first, we design a broadband SSPP absorber by adjusting the dispersion and loss of the artificial plasmonic structure (PS) simultaneously. Furthermore, owing to utilize its spatial phase manipulation ability, we integrate a resistive metasurface on top of the PS to construct a modified circuit analog (CA) absorber with a dispersive metamaterial spacer. The absorption mechanism of the hybrid structure is analyzed theoretically. The results indicate that the hybrid MA is equipped with broad and robust absorption performance over a wide incident angle range due to the synergistic absorption of the PS and metasurface. Finally, a prototype of the hybrid MA is fabricated by silk-printing technic and its absorption performances are measured. The experimental results can verify the theoretic ones and indicate that proposed hybrid MA can achieve 90% absorptivity from 3.9 GHz to 10.6 GHz with thickness of 7.0 mm, which is only 106% times of the ultimate thickness corresponding to the absorption performance of MA. In general, the concept and design offer a distinct approach of utilizing SSPP to design absorbers with excellent performances from radio frequency to optic band, which are promising for extensive applications.

4.
RSC Adv ; 14(28): 20390-20397, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38932984

RESUMO

In this work, a special multilayer structure consisting of polylactic acid (PLA) and a co-continuous PLA/polycaprolactone (PCL)/multiwalled carbon nanotube (MWCNT) (ALM) composite with a double-percolated conductive network was fabricated via layer-assembly coextrusion. It was revealed that PLA domains located at the layer interface could serve as rivets properly linking adjacent layers. Such a nacre-like structure with alternately stacked rigid PLA and flexible ALM increased the fracture strain to 354.4%, nearly quadruple that of the PLA/PCL/MWCNT conventional blending composite with the same composition, while maintaining an excellent strength above 46.0 MPa. In addition, the multilayer composites showed a special frequency-selective electromagnetic interference (EMI) shielding performance, with tunable shielding peak positions controlled by the layer number. Their maximum EMI shielding effectiveness almost contributed by absorption loss could reach 49.8 dB, which originated from two aspects: one was the high electrical conductivity offered by the double-percolated distribution of MWCNTs, and the other was the multiple wave attenuation effect that occurred at the interfaces between PLA and ALM layers and the blend interfaces in ALM layers. This effort paves a new way for developing composites with outstanding mechanical and EMI shielding properties that can be extended to other polymeric composite systems.

5.
Small Methods ; : e2301772, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513234

RESUMO

Efficient electromagnetic waves (EMWs) absorbing materials play a vital role in the electronic era. In traditional research on microwave absorbing (MA) materials, the synergistic modulation of material dispersion and structural dispersion of EMWs by incorporating multi-scale effects has frequently been overlooked, resulting in an untapped absorption potential. In this study, the material dispersion customization method based on biomass carbon is determined by quantitative analysis. The study carries out thermodynamic modulation of carbon skeleton, micro-nano porous engineering, and phosphorus atom donor doping in turn. The dielectric properties are improved step by step. In terms of structural dispersion design, inspired by the theory of antenna reciprocity, a Vivaldi antenna-like absorber is innovatively proposed. With the effective combination of material dispersion and structural dispersion engineering by 3D printing technology, the ultra-wideband absorption of 36.8 GHz and the angular stability of close to 60 ° under dual polarization are successfully realized. The work breaks the deadlock of mutual constraints between wave impedance and attenuation rate through the dispersion modulation methods on multiple scales, unlocking the potential for designing next-generation broadband wide-angle absorbers.

6.
ACS Appl Mater Interfaces ; 16(25): 32773-32783, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865582

RESUMO

The development of new electromagnetic absorbing materials is the main strategy to address electromagnetic radiation. Once traditional electromagnetic wave-absorbing materials are prepared, it is difficult to dynamically change their electromagnetic wave-absorbing performance. Facing the complexity of the information age and the rapid development of modern radar, it is significant to develop intelligent modulation of electromagnetic wave-absorbing materials. Here, CNTs/VO2/ANF composite aerogels with dynamic frequency tunability and switchable absorption on/off were synthesized. Based on the phase change behavior of VO2, the degree of polarization and interfacial effects of multiple heterogeneous interfaces between VO2 and CNTs and aramid nanofibers (ANFs) were modulated at different temperatures. With the increase in temperature (from 25 to 200 °C), the maximum absorption frequency of the frequency tunable aerogel is modulated from 12.24 to 8.56 GHz in the X-band, and the absorption intensity remains stable. The maximum effective switching bandwidth (ΔEAB) of the wave-absorbing switchable aerogel is 3.70 GHz. This study provides insights into intelligent electromagnetic wave absorption performance and paves the way for temperature-driven application of intelligent modulation of electromagnetic absorbers.

7.
Materials (Basel) ; 16(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37629842

RESUMO

Polymer matrix nanomaterials have revolutionized materials science due to their unique properties resulting from the incorporation of nanoscale fillers into polymer matrices [...].

8.
J Colloid Interface Sci ; 638: 843-854, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796131

RESUMO

In the complex engineering applications of electromagnetic (EM) wave-absorbing materials, it is insufficient for these materials to exhibit only efficient EM wave attenuation ability. EM wave-absorbing materials featuring numerous multifunctional properties are increasingly attractive for next-generation wireless communication and smart devices. Herein, we constructed a lightweight and robust multifunctional hybrid aerogel consisting of carbon nanotubes/aramid nanofibers/polyimide with low shrinkage and high porosity. The hybrid aerogels exhibit excellent EM wave attenuation, with an effective absorption bandwidth covering the entire X-band from 25 °C to 400 °C. The conductive loss capacity of the hybrid aerogel is enhanced under thermal drive, which results in an enhanced ability to attenuate EM waves, as evidenced by the fact that the best-fit thickness drops from 5.3 to 3.6 mm with increasing temperature. In addition, the hybrid aerogels are capable to efficiently absorb sound waves, with an average absorption coefficient as high as 0.86 at 1-6.3 kHz, and they exhibit superior thermal insulation properties, with a thermal conductivity as low as 41 ± 2 mW/mK. They are thus suitable for applications in the anti-icing and infrared stealth fields. The prepared multifunctional aerogels have considerable potential for EM protection, noise reduction, and thermal insulation in harsh thermal environments.

9.
Materials (Basel) ; 15(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35888202

RESUMO

Nanotechnology has witnessed an incredible resonance and a substantial number of new applications in various areas during the past three decades [...].

10.
J Colloid Interface Sci ; 626: 123-135, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780546

RESUMO

Magnetoelectric coupling is a key strategy to obtain high-performance microwave absorption materials. Especially for carbon matrix composites, the absorbing capacity can be optimized via the tuning of the graphitization degree and the content ratio of the magnetic and dielectric components. Based on this theory, a simple strategy, consisting of the solvothermal method and annealing in an inert atmosphere, is adopted in this study to combine CoNi magnetic alloys with graphitized carbon into micron-scale composite spherical particles. Additionally, special attention is paid to the correlation among the graphitization degree of carbon matrix, component proportion, and dielectric response ability, so as to achieve a flexible micromorphology design and a tunable microwave absorption performance. When the pyrolysis temperature is offset to the best of 700 â„ƒ, a broadband absorption of 6.61 GHz (reflection loss <  - 10 dB) is achieved at an ultrathin matching thickness of 1.9 mm. Adjusting the carbon content can further optimize the impedance matching and realize a high-intensity absorption with a reflection loss of - 72.7 dB. Our work proposes a useful strategy to realize the effective combination of the magnetic and dielectric loss mechanisms and boost the microwave absorption capacity toward achieving the desired broadband and a high-efficiency absorption performance.

11.
Nanoscale ; 14(29): 10375-10388, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35797985

RESUMO

The increasing hazard of electromagnetic radiation prompts people to pursue absorbing materials with better performance. However, absorbing materials with a single loss mechanism usually is unable to obtain better absorbing performance due to low impedance matching or high filling ratio. Therefore, this work proposes a C/NiCo2S4 (CNCS) material with both dielectric loss/magnetic loss to achieve efficient absorption of electromagnetic waves. The simple preparation of CNCS materials was achieved through the etching of the ZIF-67 template by nickel nitrate and the subsequent hydrothermal vulcanization process. Its unique prismatic dodecahedron hollow structure promotes multiple scattering of electromagnetic waves. The attachment of the magnetic NiCo2S4 particles on the surface of the carbon template further promotes the interface polarization and dipole polarization, which is equivalent to the formation of a resistance-rich microcircuit and enhances the effect of the conductance loss on electromagnetic waves. At 2-18 GHz, the CNCS-2 with 30% paraffin addition achieves an effective bandwidth of 5.54 GHz at a matching thickness of 1.7 mm, and has a maximum reflection loss of -36.44 dB at 1.5 mm. By adjusting the thickness of the material matching layer (1-3 mm), an effective bandwidth of up to 13.48 GHz can be achieved, perfectly covering the X-band and Ku-band. Based on the simple preparation process of the material, the special hollow structure and the multiple loss mechanisms for electromagnetic waves, we believe that CNCS can become a strong competitor for high-efficiency broadband absorbers.

12.
Nanomicro Lett ; 14(1): 173, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999287

RESUMO

Realizing ultra-wideband absorption, desirable attenuation capability at high temperature and mechanical requirements for real-life applications remains a great challenge for microwave absorbing materials. Herein, we have constructed a porous carbon fiber/polymethacrylimide (CP) structure for acquiring promising microwave absorption performance and withstanding both elevated temperature and high strength in a low density. Given the ability of porous structure to induce desirable impedance matching and multiple reflection, the absorption bandwidth of CP composite can reach ultra-wideband absorption of 14 GHz at room temperature and even cover the whole X-band at 473 K. Additionally, the presence of imide ring group in polymethacrylimide and hard bubble wall endows the composite with excellent heat and compressive behaviors. Besides, the lightweight of the CP composite with a density of only 110 mg cm-3 coupled with high compressive strength of 1.05 MPa even at 453 K also satisfies the requirements in engineering applications. Compared with soft and compressible aerogel materials, we envision that the rigid porous foam absorbing material is particularly suitable for environmental extremes.

13.
Small Methods ; 6(9): e2200429, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35676230

RESUMO

Hollow metal-organic frameworks (MOFs) with careful phase engineering have been considered to be suitable candidates for high-performance microwave absorbents. However, there has been a lack of direct methods tailored to MOFs in this area. Here, a facile and safe Ni2+ -exchange strategy is proposed to synthesize graphite/CoNi alloy hollow porous composites from Ni2+ concentration-dependent etching of Zeolite imidazole frame-67 (ZIF-67) MOF and subsequent thermal field regulation. Such a special combination of hollow structure and carefully selected hybrid phase are with optimized impedance matching and electromagnetic attenuation. Especially, the suitable carrier transport model and the rich polarization site enhance the dielectric loss, while more significant hysteresis loss and more natural resonance increase the magnetic loss. As a result, excellent microwave absorbing (MA) performances of both broadband absorption (7.63 GHz) and high-efficiency loss (-63.79 dB) are obtained. Moreover, the applicability and practicability of the strategy are demonstrated. This work illustrates the unique advantages of ion-exchange strategy in structure design, component optimization, and electromagnetic regulation, providing a new reference for the 5G cause and MA field.

14.
Nanoscale ; 13(5): 3119-3135, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33523065

RESUMO

The development of lightweight and high-efficiency microwave absorption materials has attracted wide attention in the field of electromagnetic wave absorption. Herein, two kinds of petal-like Ni-based MOFs were grown on the surface of graphene nanosheets, and then pyrolyzed to obtain new microwave absorbers. The extraordinary microwave absorption performance mainly comes from: the unique petal-like porous carbon framework of MOFs, the 3D conductive network formed by the connection of GNs, the polarization process between the interfaces of multiple heterogeneous components and high impedance matching brought about by magnetic Ni nanoparticles. By adjusting the filling ratio to only 10 wt%, the optimum reflection loss of the prepared composites is up to -53.99 dB, and the effective absorption bandwidth reaches 4.39 GHz when the matching thickness is only 1.4 mm. This work provides not only a facile method for the design and fabrication of two high-efficiency microwave absorbers, but also a reference for the precise control of electromagnetic absorption properties.

15.
Nanoscale ; 13(30): 12896-12909, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34477773

RESUMO

MOFs with high tunability are considered ideal candidates as microwave-absorbing materials. Strict experimental conditions can ensure the repeatability and maximize the potential of such materials. In this study, cubic ZIF-67 carbides synthesized at different solution temperatures showed an adjustable average size, and then by adjusting the calcination temperature we could control the degree of graphitization, so as to explore the synergistic effect of these two aspects to achieve an in-depth understanding of the electromagnetic properties and microwave absorption properties. The results showed that sample 30-600 (with the former number referring to the synthesis temperature and the latter to the calcination temperature) showed the widest effective absorption bandwidth (5.75 GHz, 1.8 mm) and the optimal reflection loss (-56.92 dB, 2.1 mm). The best matching electromagnetic parameters were obtained under the synergistic action of a smaller particle size and appropriate degree of graphitization, so as to achieve strong attenuation characteristics under low electromagnetic wave reflection. The microwave loss mechanism of the sample mainly involved dielectric losses, such as from conductance loss, dipole polarization, and interface polarization. Starting from the experimental details, this work proposes a dual control strategy for developing microwave-absorbing materials with both simplicity and practicability, which provides a useful reference for other microwave absorbents synthesized at room temperature.

16.
Int J Biol Macromol ; 129: 878-886, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30735776

RESUMO

Cellulose nanocrystals (CNCs) were isolated from waste cotton cloth fibers using a mixed acid hydrolysis method and subsequently used as fillers to reinforce a polylactic acid (PLA) matrix for the construction of high performance and biodegradable PLA/CNC composite films. The morphology, structure, and thermal and mechanical properties of CNCs, PLA, and the composite films were characterized. The length, diameter, and aspect ratio of CNCs ranged from 38 to 424 nm, 2 to 17 nm, and 10-32 respectively. The crystallinity, tensile strength, elasticity modulus, and work-to-break of PLA/CNC composite films were effectively improved by the addition of 0.1 wt% and 0.3 wt% CNCs. However, poor performance parameters were acquired at higher CNC content (0.7 wt%), because the CNCs were not well distributed in the polymer matrix.


Assuntos
Celulose/química , Fibra de Algodão/análise , Nanopartículas/química , Poliésteres/química , Têxteis/análise , Fenômenos Químicos , Análise Espectral , Termogravimetria
17.
Int J Biol Macromol ; 129: 1081-1089, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30009914

RESUMO

Cellulose nanocrystals (CNCs) were successfully fabricated from waste pueraria root residue after starch extraction via the phosphoric acid hydrolysis method by a series of chemical treatment processes including ultrasonic washing, pectin elimination, bleaching, alkali boiling, and phosphoric acid hydrolysis. The high aspect ratio of CNCs with a crystallinity index of 60 ±â€¯4.10% was observed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM). The TEM results showed that CNCs were rod-like particles with 100-330 nm in length and 2 to 6 nm in width. The average aspect ratio of the CNCs was 40 ±â€¯10. The XRD results also indicated that the crystalline structure of CNC was cellulose I, compared to that of MCC with the crystallinity index declining from 60 ±â€¯4.10% to 48 ±â€¯0.37%. The FTIR spectra showed the resulting samples were the cellulose species. Interestingly, stable colloidal suspensions were determined by the zeta potential measurement. The thermal properties of CNCs were investigated by thermogravimetric analysis, revealing that CNCs exhibited lower thermal stability compared to those of MCC and the raw pueraria root residue. This study provides a cost effective method and mild process conditions for preparing CNCs from waste pueraria root residue.


Assuntos
Celulose/química , Celulose/isolamento & purificação , Nanopartículas/química , Raízes de Plantas/química , Pueraria/química , Temperatura
18.
RSC Adv ; 8(51): 29344-29355, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35547984

RESUMO

This study presents the systematic potential effects of reaction parameters on the synthesis of Co-doped ZnNi ferrite/polyaniline composites prepared via novel interfacial polymerization. Through intensive experiments and analysis, optimum reaction conditions including the polymerization temperature and reaction time are proposed so that the performance of the material is significantly improved. The structure, functional groups and morphologies of composites are investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). In addition, the electromagnetic properties and microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites are examined by a vibrating sample magnetometer (VSM), Quantum Design (MPMS-VSM and MPMS-XL), the superconducting quantum interference device (SQUID) magnetometer and vector network analysis. Based on these analyses, it is found that by tuning the reaction conditions, i.e., polymerization temperature and reaction time, microwave absorption capabilities in terms of the maximum reflection loss (R L) value and absorber thickness can be readily optimized. The results show that the composite with an optimized polymerization condition of 20 °C for 12 h displays remarkable microwave absorption properties with maximum reflectivity of -54.3 dB, and the effective bandwidth (R L < -10 dB) is about 6.02 GHz at a thickness of 6.8 mm. Furthermore, the discussion shows that the promising microwave absorption may be due to the uniform urchin-like structure of the composites.

19.
Carbohydr Polym ; 157: 945-952, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27988013

RESUMO

Cellulose nanocrystals (CNCs) were prepared from waste cotton cloth and degreasing cotton was used as a comparison. The cellulose was first extracted by alkali and bleaching treatments, and then the CNCs were isolated by the mix acid solution hydrolysis of cellulose under the controlled conditions. The CNCs were analyzed by Attenuated total reflectance Fourier transform infrared spectroscopy, Transmission electron microscopy, X-ray diffraction analysis, thermogravimetric and differential scanning calorimetry analysis. The results confirmed that the resultant samples were the cellulose species, and the CNCs obtained from waste cotton cloth exhibited a high crystallinity index of 55.76±7.82%, which had higher thermostability than that from the degreasing cotton. The morphology analysis results showed that the ranges of length and diameter of CNC extracted from waste cotton cloth were from 28 to 470nm and 3 to 35nm. The preparation of CNCs with a high aspect ratio and good thermostability in this work paves the way for an alternative reuse of waste cotton cloth.

20.
ACS Appl Mater Interfaces ; 9(19): 16404-16416, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28459536

RESUMO

In this work, two novel flowerlike NiO hierarchical structures, rose-flower (S1) and silk-flower (S2), were synthesized by using a facial hydrothermal method, coupled with subsequent postannealing process. Structures, morphologies, and magnetic and electromagnetic properties of two NiO structures have been systematically investigated. SEM and TEM results suggested that S1 had a hierarchical rose-flower architecture with diameters in the range of 4-7 µm, whereas S2 exhibited a porous silk-flower architecture with diameters of 0.7-1.0 µm. Electromagnetic performances indicated that the NiO hierarchical structures played a crucial role in determining their dielectric behavior and impedance matching characteristic, which further influenced the microwave attenuation property of absorbers based on them. Due to its hierarchical and porous architectures, S2 had higher microwave absorption performances than S1. The maximum RL value for sample S2 can reach -65.1 dB at 13.9 GHz, while an efficient bandwidth of 3 GHz was obtained. In addition, the mechanism of the improved microwave absorption were discussed in detail. It is expected that our NiO hierarchical structures synthesized in this work could be used as a reference to design novel microwave absorption materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA