Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Circ Res ; 134(5): 529-546, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38348657

RESUMO

BACKGROUND: Mature endothelial cells (ECs) are heterogeneous, with subtypes defined by tissue origin and position within the vascular bed (ie, artery, capillary, vein, and lymphatic). How this heterogeneity is established during the development of the vascular system, especially arteriovenous specification of ECs, remains incompletely characterized. METHODS: We used droplet-based single-cell RNA sequencing and multiplexed error-robust fluorescence in situ hybridization to define EC and EC progenitor subtypes from E9.5, E12.5, and E15.5 mouse embryos. We used trajectory inference to analyze the specification of arterial ECs (aECs) and venous ECs (vECs) from EC progenitors. Network analysis identified candidate transcriptional regulators of arteriovenous differentiation, which we tested by CRISPR (clustered regularly interspaced short palindromic repeats) loss of function in human-induced pluripotent stem cells undergoing directed differentiation to aECs or vECs (human-induced pluripotent stem cell-aECs or human-induced pluripotent stem cell-vECs). RESULTS: From the single-cell transcriptomes of 7682 E9.5 to E15.5 ECs, we identified 19 EC subtypes, including Etv2+Bnip3+ EC progenitors. Spatial transcriptomic analysis of 15 448 ECs provided orthogonal validation of these EC subtypes and established their spatial distribution. Most embryonic ECs were grouped by their vascular-bed types, while ECs from the brain, heart, liver, and lung were grouped by their tissue origins. Arterial (Eln, Dkk2, Vegfc, and Egfl8), venous (Fam174b and Clec14a), and capillary (Kcne3) marker genes were identified. Compared with aECs, embryonic vECs and capillary ECs shared fewer markers than their adult counterparts. Early capillary ECs with venous characteristics functioned as a branch point for differentiation of aEC and vEC lineages. CONCLUSIONS: Our results provide a spatiotemporal map of embryonic EC heterogeneity at single-cell resolution and demonstrate that the diversity of ECs in the embryo arises from both tissue origin and vascular-bed position. Developing aECs and vECs share common venous-featured capillary precursors and are regulated by distinct transcriptional regulatory networks.


Assuntos
Células Endoteliais , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Adulto , Humanos , Animais , Camundongos , Hibridização in Situ Fluorescente , Artérias , Encéfalo , Veias
2.
Circulation ; 149(15): 1205-1230, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38189150

RESUMO

BACKGROUND: The relationship between heart failure (HF) and atrial fibrillation (AF) is clear, with up to half of patients with HF progressing to AF. The pathophysiological basis of AF in the context of HF is presumed to result from atrial remodeling. Upregulation of the transcription factor FOG2 (friend of GATA2; encoded by ZFPM2) is observed in human ventricles during HF and causes HF in mice. METHODS: FOG2 expression was assessed in human atria. The effect of adult-specific FOG2 overexpression in the mouse heart was evaluated by whole animal electrophysiology, in vivo organ electrophysiology, cellular electrophysiology, calcium flux, mouse genetic interactions, gene expression, and genomic function, including a novel approach for defining functional transcription factor interactions based on overlapping effects on enhancer noncoding transcription. RESULTS: FOG2 is significantly upregulated in the human atria during HF. Adult cardiomyocyte-specific FOG2 overexpression in mice caused primary spontaneous AF before the development of HF or atrial remodeling. FOG2 overexpression generated arrhythmia substrate and trigger in cardiomyocytes, including calcium cycling defects. We found that FOG2 repressed atrial gene expression promoted by TBX5. FOG2 bound a subset of GATA4 and TBX5 co-bound genomic locations, defining a shared atrial gene regulatory network. FOG2 repressed TBX5-dependent transcription from a subset of co-bound enhancers, including a conserved enhancer at the Atp2a2 locus. Atrial rhythm abnormalities in mice caused by Tbx5 haploinsufficiency were rescued by Zfpm2 haploinsufficiency. CONCLUSIONS: Transcriptional changes in the atria observed in human HF directly antagonize the atrial rhythm gene regulatory network, providing a genomic link between HF and AF risk independent of atrial remodeling.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Insuficiência Cardíaca , Humanos , Camundongos , Animais , Fibrilação Atrial/genética , Redes Reguladoras de Genes , Cálcio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Átrios do Coração , Insuficiência Cardíaca/genética , Genômica , Fator de Transcrição GATA4/genética
3.
Circulation ; 147(11): 881-896, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36705030

RESUMO

BACKGROUND: Cardiac chamber-selective transcriptional programs underpin the structural and functional differences between atrial and ventricular cardiomyocytes (aCMs and vCMs). The mechanisms responsible for these chamber-selective transcriptional programs remain largely undefined. METHODS: We nominated candidate chamber-selective enhancers (CSEs) by determining the genome-wide occupancy of 7 key cardiac transcription factors (GATA4, MEF2A, MEF2C, NKX2-5, SRF, TBX5, TEAD1) and transcriptional coactivator P300 in atria and ventricles. Candidate enhancers were tested using an adeno-associated virus-mediated massively parallel reporter assay. Chromatin features of CSEs were evaluated by performing assay of transposase accessible chromatin sequencing and acetylation of histone H3 at lysine 27-HiChIP on aCMs and vCMs. CSE sequence requirements were determined by systematic tiling mutagenesis of 29 CSEs at 5 bp resolution. Estrogen-related receptor (ERR) function in cardiomyocytes was evaluated by Cre-loxP-mediated inactivation of ERRα and ERRγ in cardiomyocytes. RESULTS: We identified 134 066 and 97 506 regions reproducibly occupied by at least 1 transcription factor or P300, in atria or ventricles, respectively. Enhancer activities of 2639 regions bound by transcription factors or P300 were tested in aCMs and vCMs by adeno-associated virus-mediated massively parallel reporter assay. This identified 1092 active enhancers in aCMs or vCMs. Several overlapped loci associated with cardiovascular disease through genome-wide association studies, and 229 exhibited chamber-selective activity in aCMs or vCMs. Many CSEs exhibited differential chromatin accessibility between aCMs and vCMs, and CSEs were enriched for aCM- or vCM-selective acetylation of histone H3 at lysine 27-anchored loops. Tiling mutagenesis of 29 CSEs identified the binding motif of ERRα/γ as important for ventricular enhancer activity. The requirement of ERRα/γ to activate ventricular CSEs and promote vCM identity was confirmed by loss of the vCM gene profile in ERRα/γ knockout vCMs. CONCLUSIONS: We identified 229 CSEs that could be useful research tools or direct therapeutic gene expression. We showed that chamber-selective multi-transcription factor, P300 occupancy, open chromatin, and chromatin looping are predictive features of CSEs. We found that ERRα/γ are essential for maintenance of ventricular identity. Finally, our gene expression, epigenetic, 3-dimensional genome, and enhancer activity atlas provide key resources for future studies of chamber-selective gene regulation.


Assuntos
Histonas , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Histonas/genética , Histonas/metabolismo , Estudo de Associação Genômica Ampla , Lisina/genética , Lisina/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Estrogênios
4.
Circ Res ; 131(11): e152-e168, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36263775

RESUMO

BACKGROUND: The pioneer transcription factor (TF) GATA4 (GATA Binding Protein 4) is expressed in multiple cardiovascular lineages and is essential for heart development. GATA4 lineage-specific occupancy in the developing heart underlies its lineage specific activities. Here, we characterized GATA4 chromatin occupancy in cardiomyocyte and endocardial lineages, dissected mechanisms that control lineage specific occupancy, and analyzed GATA4 regulation of endocardial gene expression. METHODS: We mapped GATA4 chromatin occupancy in cardiomyocyte and endocardial cells of embryonic day 12.5 (E12.5) mouse heart using lineage specific, Cre-activated biotinylation of GATA4. Regulation of GATA4 pioneering activity was studied in cell lines stably overexpressing GATA4. GATA4 regulation of endocardial gene expression was analyzed using single cell RNA sequencing and luciferase reporter assays. RESULTS: Cardiomyocyte-selective and endothelial-selective GATA4 occupied genomic regions had features of lineage specific enhancers. Footprints within cardiomyocyte- and endothelial-selective GATA4 regions were enriched for NKX2-5 (NK2 homeobox 5) and ETS1 (ETS Proto-Oncogene 1) motifs, respectively, and both of these TFs interacted with GATA4 in co-immunoprecipitation assays. In stable NIH3T3 cell lines expressing GATA4 with or without NKX2-5 or ETS1, the partner TFs re-directed GATA4 pioneer binding and augmented its ability to open previously inaccessible regions, with ETS1 displaying greater potency as a pioneer partner than NKX2-5. Single-cell RNA sequencing of embryonic hearts with endothelial cell-specific Gata4 inactivation identified Gata4-regulated endocardial genes, which were adjacent to GATA4-bound, endothelial regions enriched for both GATA4 and ETS1 motifs. In reporter assays, GATA4 and ETS1 cooperatively stimulated endothelial cell enhancer activity. CONCLUSIONS: Lineage selective non-pioneer TFs NKX2-5 and ETS1 guide the activity of pioneer TF GATA4 to bind and open chromatin and create active enhancers and mechanistically link ETS1 interaction to GATA4 regulation of endocardial development.


Assuntos
Endocárdio , Fator de Transcrição GATA4 , Proteína Proto-Oncogênica c-ets-1 , Animais , Camundongos , Cromatina/metabolismo , Endocárdio/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Miócitos Cardíacos/metabolismo , Células NIH 3T3 , Proteína Proto-Oncogênica c-ets-1/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(35): 21450-21458, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817427

RESUMO

How overall principles of cell-type-specific gene regulation (the "logic") may change during ontogeny is largely unexplored. We compared transcriptomic, epigenomic, and three-dimensional (3D) genomic profiles in embryonic (EryP) and adult (EryD) erythroblasts. Despite reduced chromatin accessibility compared to EryP, distal chromatin of EryD is enriched in H3K27ac, Gata1, and Myb occupancy. EryP-/EryD-shared enhancers are highly correlated with red blood cell identity genes, whereas cell-type-specific regulation employs different cis elements in EryP and EryD cells. In contrast to EryP-specific genes, which exhibit promoter-centric regulation through Gata1, EryD-specific genes rely more on distal enhancers for regulation involving Myb-mediated enhancer activation. Gata1 HiChIP demonstrated an overall increased enhancer-promoter interactions at EryD-specific genes, whereas genome editing in selected loci confirmed distal enhancers are required for gene expression in EryD but not in EryP. Applying a metric for enhancer dependence of transcription, we observed a progressive reliance on cell-specific enhancers with increasing ontogenetic age among diverse tissues of mouse and human origin. Our findings highlight fundamental and conserved differences at distinct developmental stages, characterized by simpler promoter-centric regulation of cell-type-specific genes in embryonic cells and increased combinatorial enhancer-driven control in adult cells.


Assuntos
Fatores Etários , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Animais , Cromatina , Elementos Facilitadores Genéticos/genética , Eritroblastos , Eritropoese/fisiologia , Feminino , Expressão Gênica , Genômica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética
8.
Circ Res ; 122(1): 74-87, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29021295

RESUMO

RATIONALE: Although mitochondrial diseases often cause abnormal myocardial development, the mechanisms by which mitochondria influence heart growth and function are poorly understood. OBJECTIVE: To investigate these disease mechanisms, we studied a genetic model of mitochondrial dysfunction caused by inactivation of Tfam (transcription factor A, mitochondrial), a nuclear-encoded gene that is essential for mitochondrial gene transcription and mitochondrial DNA replication. METHODS AND RESULTS: Tfam inactivation by Nkx2.5Cre caused mitochondrial dysfunction and embryonic lethal myocardial hypoplasia. Tfam inactivation was accompanied by elevated production of reactive oxygen species (ROS) and reduced cardiomyocyte proliferation. Mosaic embryonic Tfam inactivation confirmed that the block to cardiomyocyte proliferation was cell autonomous. Transcriptional profiling by RNA-seq demonstrated the activation of the DNA damage pathway. Pharmacological inhibition of ROS or the DNA damage response pathway restored cardiomyocyte proliferation in cultured fetal cardiomyocytes. Neonatal Tfam inactivation by AAV9-cTnT-Cre caused progressive, lethal dilated cardiomyopathy. Remarkably, postnatal Tfam inactivation and disruption of mitochondrial function did not impair cardiomyocyte maturation. Rather, it elevated ROS production, activated the DNA damage response pathway, and decreased cardiomyocyte proliferation. We identified a transient window during the first postnatal week when inhibition of ROS or the DNA damage response pathway ameliorated the detrimental effect of Tfam inactivation. CONCLUSIONS: Mitochondrial dysfunction caused by Tfam inactivation induced ROS production, activated the DNA damage response, and caused cardiomyocyte cell cycle arrest, ultimately resulting in lethal cardiomyopathy. Normal mitochondrial function was not required for cardiomyocyte maturation. Pharmacological inhibition of ROS or DNA damage response pathways is a potential strategy to prevent cardiac dysfunction caused by some forms of mitochondrial dysfunction.


Assuntos
Cardiomiopatias/metabolismo , Proliferação de Células/fisiologia , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Cardiomiopatias/patologia , Células Cultivadas , Dano ao DNA/fisiologia , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia
9.
Genes Dev ; 26(1): 37-42, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22215809

RESUMO

Polycomb-repressive complex 2 (PRC2) promotes tissue-specific differentiation by depositing trimethylated histone H3 Lys 27 (H3K27me3) epigenetic marks to silence ectopic gene expression programs. Here, we show that EZH2, the catalytic subunit of PRC2, is required for cardiac morphogenesis. Both in vitro and in fetal hearts, EZH2 interacted with cardiac transcription factor GATA4 and directly methylated it at Lys 299. PRC2 methylation of GATA4 attenuated its transcriptional activity by reducing its interaction with and acetylation by p300. Our results reveal a new mechanism of PRC2-mediated transcriptional repression in which PRC2 methylates a transcription factor to inhibit its transcriptional activity.


Assuntos
Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Repressoras/metabolismo , Animais , Proteína p300 Associada a E1A/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Histona-Lisina N-Metiltransferase/metabolismo , Metilação , Camundongos , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Ligação Proteica
10.
Circ Res ; 116(1): 35-45, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25249570

RESUMO

RATIONALE: Yes-associated protein (YAP), the nuclear effector of Hippo signaling, regulates cellular growth and survival in multiple organs, including the heart, by interacting with TEA (transcriptional enhancer activator)-domain sequence-specific DNA-binding proteins. Recent studies showed that YAP stimulates cardiomyocyte proliferation and survival. However, the direct transcriptional targets through which YAP exerts its effects are poorly defined. OBJECTIVE: To identify direct YAP targets that mediate its mitogenic and antiapoptotic effects in the heart. METHODS AND RESULTS: We identified direct YAP targets by combining differential gene expression analysis in YAP gain- and loss-of-function with genome-wide identification of YAP-bound loci using chromatin immunoprecipitation and high throughput sequencing. This screen identified Pik3cb, encoding p110ß, a catalytic subunit of phosphoinositol-3-kinase, as a candidate YAP effector that promotes cardiomyocyte proliferation and survival. YAP and TEA-domain occupied a conserved enhancer within the first intron of Pik3cb, and this enhancer drove YAP-dependent reporter gene expression. Yap gain- and loss-of-function studies indicated that YAP is necessary and sufficient to activate the phosphoinositol-3-kinase-Akt pathway. Like Yap, Pik3cb gain-of-function stimulated cardiomyocyte proliferation, and Pik3cb knockdown dampened YAP mitogenic activity. Reciprocally, impaired heart function in Yap loss-of-function was significantly rescued by adeno-associated virus-mediated Pik3cb expression. CONCLUSIONS: Pik3cb is a crucial direct target of YAP, through which the YAP activates phosphoinositol-3-kinase-AKT pathway and regulates cardiomyocyte proliferation and survival.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Proliferação de Células/fisiologia , Classe Ib de Fosfatidilinositol 3-Quinase/biossíntese , Miócitos Cardíacos/fisiologia , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Proto-Oncogênicas c-akt/biossíntese , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/genética , Sequência de Bases , Sobrevivência Celular/fisiologia , Células Cultivadas , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Via de Sinalização Hippo , Camundongos , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Transdução de Sinais/fisiologia , Proteínas de Sinalização YAP
11.
Circ Res ; 115(3): 354-63, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24833660

RESUMO

RATIONALE: Yes-associated protein (YAP), the terminal effector of the Hippo signaling pathway, is crucial for regulating embryonic cardiomyocyte proliferation. OBJECTIVE: We hypothesized that YAP activation after myocardial infarction (MI) would preserve cardiac function and improve survival. METHODS AND RESULTS: We used a cardiac-specific, inducible expression system to activate YAP in adult mouse heart. Activation of YAP in adult heart promoted cardiomyocyte proliferation and did not deleteriously affect heart function. Furthermore, YAP activation after MI preserved heart function and reduced infarct size. Using adeno-associated virus subtype 9 (AAV9) as a delivery vector, we expressed human YAP (hYAP) in the adult murine myocardium immediately after MI. We found that AAV9:hYAP significantly improved cardiac function and mouse survival. AAV9:hYAP did not exert its salutary effects by reducing cardiomyocyte apoptosis. Rather, AAV9:hYAP stimulated adult cardiomyocyte proliferation. Gene expression profiling indicated that AAV9:hYAP stimulated expression of cell cycle genes and promoted a less mature cardiac gene expression signature. CONCLUSIONS: Cardiac-specific YAP activation after MI mitigated myocardial injury, improved cardiac function, and enhanced survival. These findings suggest that therapeutic activation of YAP or its downstream targets, potentially through AAV-mediated gene therapy, may be a strategy to improve outcome after MI.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Animais , Apoptose/genética , Apoptose/fisiologia , Cardiomegalia , Proliferação de Células , Sobrevivência Celular/fisiologia , Dependovirus/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Contração Miocárdica/fisiologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/mortalidade , Miócitos Cardíacos/citologia , Cadeias Pesadas de Miosina/genética , Regeneração/genética , Regeneração/fisiologia , Taxa de Sobrevida , Fatores de Transcrição , Transcriptoma , Proteínas de Sinalização YAP
12.
Proc Natl Acad Sci U S A ; 110(38): 15395-400, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003143

RESUMO

Transcriptional profiling is a useful strategy to study development and disease. Approaches to isolate RNA from specific cell types, or from specific cellular compartments, would extend the power of this strategy. Previous work has shown that isolation of genetically tagged ribosomes (translating ribosome affinity purification; TRAP) is an effective means to isolate ribosome-bound RNA selectively from transgene-expressing cells. However, widespread application of this technology has been limited by available transgenic mouse lines. Here we characterize a TRAP allele (Rosa26(fsTRAP)) that makes this approach more widely accessible. We show that endothelium-specific activation of Rosa26(fsTRAP) identifies endothelial cell-enriched transcripts, and that cardiomyocyte-restricted TRAP is a useful means to identify genes that are differentially expressed in cardiomyocytes in a disease model. Furthermore, we show that TRAP is an effective means for studying translational regulation, and that several nuclear-encoded mitochondrial genes are under strong translational control. Our analysis of ribosome-bound transcripts also shows that a subset of long intergenic noncoding RNAs are weakly ribosome-bound, but that the majority of noncoding RNAs, including most long intergenic noncoding RNAs, are ribosome-bound to the same extent as coding transcripts. Together, these data show that the TRAP strategy and the Rosa26(fsTRAP) allele will be useful tools to probe cell type-specific transcriptomes, study translational regulation, and probe ribosome binding of noncoding RNAs.


Assuntos
Alelos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/fisiologia , RNA Ribossômico/isolamento & purificação , RNA não Traduzido/genética , Ribossomos/genética , Transcriptoma/genética , Animais , Western Blotting , Primers do DNA/genética , Ecocardiografia , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Proteína Ribossômica L10 , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
13.
Circ Res ; 110(3): 406-15, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22158708

RESUMO

RATIONALE: Epigenetic marks are crucial for organogenesis, but their role in heart development is poorly understood. Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27, which establishes H3K27me3 repressive epigenetic marks that promote tissue-specific differentiation by silencing ectopic gene programs. OBJECTIVE: We studied the function of PRC2 in murine heart development using a tissue-restricted conditional inactivation strategy. METHODS AND RESULTS: Inactivation of the PRC2 subunit Ezh2 by Nkx2-5(Cre) (Ezh2(NK)) caused lethal congenital heart malformations, namely, compact myocardial hypoplasia, hypertrabeculation, and ventricular septal defect. Candidate and genome-wide RNA expression profiling and chromatin immunoprecipitation analyses of Ezh2(NK) heart identified genes directly repressed by EZH2. Among these were the potent cell cycle inhibitors Ink4a/b (inhibitors of cyclin-dependent kinase 4 A and B), the upregulation of which was associated with decreased cardiomyocyte proliferation in Ezh2(NK). EZH2-repressed genes were enriched for transcriptional regulators of noncardiomyocyte expression programs such as Pax6, Isl1, and Six1. EZH2 was also required for proper spatiotemporal regulation of cardiac gene expression, because Hcn4, Mlc2a, and Bmp10 were inappropriately upregulated in ventricular RNA. PRC2 was also required later in heart development, as indicated by cardiomyocyte-restricted TNT-Cre inactivation of the PRC2 subunit Eed. However, Ezh2 inactivation by TNT-Cre did not cause an overt phenotype, likely because of functional redundancy with Ezh1. Thus, early Ezh2 inactivation by Nk2-5(Cre) caused later disruption of cardiomyocyte gene expression and heart development. CONCLUSIONS: Our study reveals a previously undescribed role of EZH2 in regulating heart formation and shows that perturbation of the epigenetic landscape early in cardiogenesis has sustained disruptive effects at later developmental stages.


Assuntos
Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Coração/embriologia , Coração/fisiologia , Proteínas Repressoras/fisiologia , Animais , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Estudo de Associação Genômica Ampla , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/fisiologia , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Modelos Animais , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Proteínas Repressoras/genética , Fatores de Transcrição/fisiologia
14.
Nat Genet ; 56(3): 420-430, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38378865

RESUMO

Rare coding mutations cause ∼45% of congenital heart disease (CHD). Noncoding mutations that perturb cis-regulatory elements (CREs) likely contribute to the remaining cases, but their identification has been problematic. Using a lentiviral massively parallel reporter assay (lentiMPRA) in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we functionally evaluated 6,590 noncoding de novo variants (ncDNVs) prioritized from the whole-genome sequencing of 750 CHD trios. A total of 403 ncDNVs substantially affected cardiac CRE activity. A majority increased enhancer activity, often at regions with undetectable reference sequence activity. Of ten DNVs tested by introduction into their native genomic context, four altered the expression of neighboring genes and iPSC-CM transcriptional state. To prioritize future DNVs for functional testing, we used the MPRA data to develop a regression model, EpiCard. Analysis of an independent CHD cohort by EpiCard found enrichment of DNVs. Together, we developed a scalable system to measure the effect of ncDNVs on CRE activity and deployed it to systematically assess the contribution of ncDNVs to CHD.


Assuntos
Cardiopatias Congênitas , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiopatias Congênitas/genética , Sequências Reguladoras de Ácido Nucleico , Mutação , Miócitos Cardíacos
16.
Cardiovasc Res ; 119(1): 221-235, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35576474

RESUMO

AIMS: Calcium-handling capacity is a major gauge of cardiomyocyte maturity. Ryanodine receptor 2 (RYR2) is the pre-dominant calcium channel that releases calcium from the sarcoplasmic reticulum/endoplasmic reticulum (SR/ER) to activate cardiomyocyte contraction. Although RYR2 was previously implied as a key regulator of cardiomyocyte maturation, the mechanisms remain unclear. The aim of this study is to solve this problem. METHODS AND RESULTS: We performed Cas9/AAV9-mediated somatic mutagenesis to knockout RYR2 specifically in cardiomyocytes in mice. We conducted a genetic mosaic analysis to dissect the cell-autonomous function of RYR2 during cardiomyocyte maturation. We found that RYR2 depletion triggered ultrastructural and transcriptomic defects relevant to cardiomyocyte maturation. These phenotypes were associated with the drastic activation of ER stress pathways. The ER stress alleviator tauroursodeoxycholic acid partially rescued the defects in RYR2-depleted cardiomyocytes. Overexpression of ATF4, a key ER stress transcription factor, recapitulated defects in RYR2-depleted cells. Integrative analysis of RNA-Seq and bioChIP-Seq data revealed that protein biosynthesis-related genes are the major direct downstream targets of ATF4. CONCLUSION: RYR2-regulated ER homeostasis is essential for cardiomyocyte maturation. Severe ER stress perturbs cardiomyocyte maturation primarily through ATF4 activation. The major downstream effector genes of ATF4 are related to protein biosynthesis.


Assuntos
Miócitos Cardíacos , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Camundongos , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Retículo Sarcoplasmático/metabolismo , Resposta a Proteínas não Dobradas , Sinalização do Cálcio
17.
Dev Cell ; 58(10): 898-914.e7, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37071996

RESUMO

Cardiomyocyte differentiation continues throughout murine gestation and into the postnatal period, driven by temporally regulated expression changes in the transcriptome. The mechanisms that regulate these developmental changes remain incompletely defined. Here, we used cardiomyocyte-specific ChIP-seq of the activate enhancer marker P300 to identify 54,920 cardiomyocyte enhancers at seven stages of murine heart development. These data were matched to cardiomyocyte gene expression profiles at the same stages and to Hi-C and H3K27ac HiChIP chromatin conformation data at fetal, neonatal, and adult stages. Regions with dynamic P300 occupancy exhibited developmentally regulated enhancer activity, as measured by massively parallel reporter assays in cardiomyocytes in vivo, and identified key transcription factor-binding motifs. These dynamic enhancers interacted with temporal changes of the 3D genome architecture to specify developmentally regulated cardiomyocyte gene expressions. Our work provides a 3D genome-mediated enhancer activity landscape of murine cardiomyocyte development.


Assuntos
Elementos Facilitadores Genéticos , Miócitos Cardíacos , Animais , Camundongos , Cromatina , Regiões Promotoras Genéticas , Transcriptoma
18.
J Mol Cell Cardiol ; 52(1): 43-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21907210

RESUMO

Myocardial infarction (MI) is one of the leading causes of morbidity and mortality world-wide. Whether endogenous repair and regenerative ability could be augmented by drug administration is an important issue for generation of novel therapeutic approach. Recently it was reported that in mice pretreated with thymosin beta 4 (TB4) and subsequently subjected to experimental MI, a subset of epicardial cells differentiated into cardiomyocytes. In clinical settings, epicardial priming with TB4 prior to MI is impractical. Here we tested if TB4 treatment after MI could reprogram epicardium into cardiomyocytes and augment the epicardium's injury response. Using epicardium genetic lineage trace line Wt1(CreERT2/+) and double reporter line Rosa26(mTmG/+), we found post-MI TB4 treatment significantly increased the thickness of epicardium and coronary capillary density. However, epicardium-derived cells did not adopt cardiomyocyte fate, nor did they migrate into myocardium to become coronary endothelial cells. Our result thus indicates that TB4 treatment after MI does not alter epicardial cell fate to include the cardiomyocyte lineage, providing both cautions and insights for the full exploration of the potential benefits of TB4 in the clinical settings. This article is part of a Special Issue entitled 'Possible Editorial'.


Assuntos
Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Pericárdio/citologia , Pericárdio/efeitos dos fármacos , Timosina/farmacologia , Timosina/uso terapêutico , Animais , Diferenciação Celular/efeitos dos fármacos , Camundongos , Infarto do Miocárdio/metabolismo
19.
EBioMedicine ; 73: 103632, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34688035

RESUMO

BACKGROUND: Pathological neovascularization in neovascular age-related macular degeneration (nAMD) is the leading cause of vision loss in the elderly. Increasing evidence shows that cells of myeloid lineage play important roles in controlling pathological endothelium formation. Suppressor of cytokine signaling 3 (SOCS3) pathway has been linked to neovascularization. METHODS: We utilised a laser-induced choroidal neovascularization (CNV) mouse model to investigate the neovascular aspect of human AMD. In several cell lineage reporter mice, bone marrow chimeric mice and Socs3 loss-of-function (knockout) and gain-of-function (overexpression) mice, immunohistochemistry, confocal, and choroidal explant co-culture with bone marrow-derived macrophage medium were used to study the mechanisms underlying pathological CNV formation via myeloid SOCS3. FINDINGS: SOCS3 was significantly induced in myeloid lineage cells, which were recruited into the CNV lesion area. Myeloid Socs3 overexpression inhibited laser-induced CNV, reduced myeloid lineage-derived macrophage/microglia recruitment onsite, and attenuated pro-inflammatory factor expression. Moreover, SOCS3 in myeloid regulated vascular sprouting ex vivo in choroid explants and SOCS3 agonist reduced in vivo CNV. INTERPRETATION: These findings suggest that myeloid lineage cells contributed to pathological CNV formation regulated by SOCS3. FUNDING: This project was funded by NIH/NEI (R01EY030140, R01EY029238), BrightFocus Foundation, American Health Assistance Foundation (AHAF), and Boston Children's Hospital Ophthalmology Foundation for YS and the National Institutes of Health/National Heart, Lung and Blood Institute (U01HL098166) for PZ.


Assuntos
Neovascularização de Coroide/etiologia , Neovascularização de Coroide/metabolismo , Suscetibilidade a Doenças , Células Mieloides/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Animais , Biomarcadores , Corioide/irrigação sanguínea , Corioide/metabolismo , Corioide/patologia , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Flavanonas/farmacologia , Imunofluorescência , Imuno-Histoquímica , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteína 3 Supressora da Sinalização de Citocinas/agonistas , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Tocoferóis/efeitos adversos
20.
Elife ; 102021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34259631

RESUMO

Tuberous sclerosis complex (TSC) is a genetic disorder that is associated with multiple neurological manifestations. Previously, we demonstrated that Tsc1 loss in cerebellar Purkinje cells (PCs) can cause altered social behavior in mice. Here, we performed detailed transcriptional and translational analyses of Tsc1-deficient PCs to understand the molecular alterations in these cells. We found that target transcripts of the Fragile X Mental Retardation Protein (FMRP) are reduced in mutant PCs with evidence of increased degradation. Surprisingly, we observed unchanged ribosomal binding for many of these genes using translating ribosome affinity purification. Finally, we found that multiple FMRP targets, including SHANK2, were reduced, suggesting that compensatory increases in ribosomal binding efficiency may be unable to overcome reduced transcript levels. These data further implicate dysfunction of FMRP and its targets in TSC and suggest that treatments aimed at restoring the function of these pathways may be beneficial.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células de Purkinje/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Animais , Modelos Animais de Doenças , Expressão Gênica , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Ribossomos/metabolismo , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA