Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(15): e2121141119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35344401

RESUMO

SignificanceThe conservation of historical relics against microbial biodeterioration is critical to preserving cultural heritages. One major challenge is our limited understanding of microorganisms' dispersal, colonization, and persistence on relics after excavation and opening to external environments. Here, we investigate the ecological and physiological profiles of the microbiome within and outside the Dahuting Han Dynasty Tomb with a 1,800-y history. Actinobacteria dominate the microbiome in this tomb. Via interkingdom signaling mutualism, springtails carry Actinobacteria as one possible source into the tomb from surrounding environments. Subsequently, Actinobacteria produce cellulases combined with antimicrobial substances, which helps them to colonize and thrive in the tomb via intrakingdom competition. Our findings unravel the ecology of the microbiomes colonizing historical relics and provide help for conservation practices.


Assuntos
Actinobacteria , Microbiota , Bactérias
2.
Org Biomol Chem ; 16(34): 6316-6321, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30128466

RESUMO

In the presence of cesium carbonate, an efficient synthesis of aryl methyl sulfides by the reactions of aryl halides with commercially available S-methylisothiourea sulfate is developed. This odourless and highly crystalline solid can be used as the substitute for malodorous methanethiol. The gram-scale reaction also proceeds smoothly without the use of column chromatography separation. Similarly, 2-(dimethylamino)ethylthio and cyclopropylmethylthio groups can be easily introduced into the aromatic rings from the corresponding S-[2-(dimethylamino)ethyl]isothiourea dihydrochloride and S-cyclopropylmethylisothiourea hydrobromide. The possible reaction mechanism is proposed. It is believed that this route to aryl alkyl sulfides is well competitive with currently known methods due to its wide substrate scope, excellent yields, easy operation and transition-metal-free conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA