Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 472
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(16): e2301879120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036969

RESUMO

Light plays an important role in determining plant architecture, which greatly influences crop yield. However, the precise mechanisms by which light signaling regulates bud outgrowth remain to be identified. Here, we show that light regulates bud outgrowth via both HY5 and brassinosteroid (BR)-dependent pathways in tomato. Inactivation of the red-light photoreceptor PHYB, or deficiencies in PHYB or the blue-light photoreceptor CRY1a, inhibits bud outgrowth and leads to decreased accumulation of HY5 protein and increased transcript level of BRANCHED1 (BRC1), a central integrator of branching signals. HY5, functioning as a mobile systemic signal from leaves, promotes bud outgrowth by directly suppressing BRC1 transcript and activating the transcript of BR biosynthesis genes within the lateral buds in tomato. Furthermore, BRC1 prevents the accumulation of cytokinin (CK) and gibberellin (GA) by directly inhibiting the transcript of CK synthesis gene LOG4, while increasing the transcript levels of CK and GA degradation genes (CKX7, GA2ox4, and GA2ox5), leading to an arrest of bud outgrowth. Moreover, bud outgrowth occurs predominantly in the day due to the suppression of BRC1 transcript by HY5. These findings demonstrate that light-inducible HY5 acts as a systemic signaling factor in fine-tuning the bud outgrowth of tomato.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Brotos de Planta , Fatores de Transcrição/metabolismo , Citocininas/metabolismo , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol ; 195(2): 1005-1024, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38431528

RESUMO

Drought is a major environmental stress threatening plant growth and productivity. Calcium-dependent protein kinases (CPKs) are plant-specific Ca2+ sensors with multifaceted roles in signaling drought responses. Nonetheless, the mechanisms underpinning how CPKs transmit downstream drought signaling remain unresolved. Through genetic investigations, our study unveiled that knocking out CPK27 reduced drought tolerance in tomato (Solanum lycopersicum) plants and impaired abscisic acid (ABA)-orchestrated plant response to drought stress. Proteomics and phosphoproteomics revealed that CPK27-dependent drought-induced proteins were highly associated with the sugar metabolism pathway, which was further verified by reduced soluble sugar content in the cpk27 mutant under drought conditions. Using protein-protein interaction assays and phosphorylation assessments, we demonstrated that CPK27 directly interacted with and phosphorylated tonoplast sugar transporter 2 (TST2), promoting intercellular soluble sugar accumulation during drought stress. Furthermore, Ca2+ and ABA enhanced CPK27-mediated interaction and phosphorylation of TST2, thus revealing a role of TST2 in tomato plant drought tolerance. These findings extend the toolbox of potential interventions for enhancing plant drought stress tolerance and provide a target to improve drought tolerance by manipulating CPK27-mediated soluble sugar accumulation for rendering drought tolerance in a changing climate.


Assuntos
Ácido Abscísico , Secas , Proteínas de Plantas , Proteínas Quinases , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Resistência à Seca
3.
Plant Physiol ; 193(3): 2105-2121, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37565524

RESUMO

Chilling temperatures induce an increase in cytoplasmic calcium (Ca2+) ions to transmit cold signals, but the precise role of Calmodulins (CaMs), a type of Ca2+ sensor, in plant tolerance to cold stress remains elusive. In this study, we characterized a tomato (Solanum lycopersicum) CaM gene, CALMODULIN6 (CaM6), which responds to cold stimulus. Overexpressing CaM6 increased tomato sensitivity to cold stress whereas silencing CaM6 resulted in a cold-insensitive phenotype. We showed that CaM6 interacts with Inducer of CBF expression 1 (ICE1) in a Ca2+-independent process and ICE1 contributes to cold tolerance in tomato plants. By integrating RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) assays, we revealed that ICE1 directly altered the expression of 76 downstream cold-responsive (COR) genes that potentially confer cold tolerance to tomato plants. Moreover, the physical interaction of CaM6 with ICE1 attenuated ICE1 transcriptional activity during cold stress. These findings reveal that CaM6 attenuates the cold tolerance of tomato plants by suppressing ICE1-dependent COR gene expression. We propose a CaM6/ICE1 module in which ICE1 is epistatic to CaM6 under cold stress. Our study sheds light on the mechanism of plant response to cold stress and reveals CaM6 is involved in the regulation of ICE1.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Cálcio , Temperatura Baixa , Resposta ao Choque Frio/genética , Regulação da Expressão Gênica de Plantas
4.
Plant Cell Environ ; 47(2): 429-441, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37916615

RESUMO

The ratio of red light to far-red light (R:FR) is perceived by light receptors and consequently regulates plant architecture. Regulation of shoot branching by R:FR ratio involves plant hormones. However, the roles of strigolactone (SL), the key shoot branching hormone and the interplay of different hormones in the light regulation of shoot branching in tomato (Solanum lycopersicum) are elusive. Here, we found that defects in SL synthesis genes CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) and CCD8 in tomato resulted in more lateral bud growth but failed to reverse the FR inhibition of lateral bud growth, which was associated with increased auxin synthesis and decreased synthesis of cytokinin (CK) and brassinosteroid (BR). Treatment of auxin also inhibited shoot branching in ccd mutants. However, CK released the FR inhibition of lateral bud growth in ccd mutants, concomitant with the upregulation of BR synthesis genes. Furthermore, plants that overexpressed BR synthesis gene showed more lateral bud growth and the shoot branching was less sensitive to the low R:FR ratio. The results indicate that SL synthesis is dispensable for light regulation of shoot branching in tomato. Auxin mediates the response to R:FR ratio to regulate shoot branching by suppressing CK and BR synthesis.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Luz Vermelha , Brotos de Planta/metabolismo , Citocininas , Lactonas , Ácidos Indolacéticos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Arch Biochem Biophys ; 754: 109957, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467357

RESUMO

OBJECTIVES: To investigate the therapeutic effects of Zeaxanthin (Zea), one of the oxidized xanthophyll carotenoids belonging to the isoprenoids, on inhibiting the angiogenesis and tumor growth of glioblastoma (GBM) via an in vitro and in vivo study. METHODS: The effects of Zea on the proliferation, adhesion, migration and invasion of human GBM cell lines were detected by cell proliferation assay, cell adhesion assay and Transwell assay. The effect of Zea on angiogenesis was detected by rat aortic ring assay and human umbilical vein endothelial cells (HUVEC) in vitro tube formation assay. The effects of Zea on PARP, Caspase 3 and VEGFR2 phosphorylation as well as VEGFR2's downstream signaling pathway were detected by Western blot. The in vivo human GBM xenograft mouse model was employed to study the therapeutic efficacy of Zea. RESULTS: Zea impaired the proliferation, adhesion, migration and invasion of U87 and U251 cells as well as HUVECs. Rat aortic ring experiments displayed Zea significantly inhibited angiogenesis during VEGF-induced microvascular germination. In vitro and in vivo vascular experiments verified that Zea inhibited VEGF-induced HUVEC proliferation and capillary-like tube formation. Additionally, Zea induced GBM cells apoptosis via increasing the expression of cleaved PARP and Caspase 3. In HUVECs and U251 GBM cells, Zea down-regulated VEGF-induced activation of the VEGFR2 kinase pathway. Meanwhile the expression of p-AKT, p-ERK, p-STAT3 and FAK were all attenuated in U251 cells. Moreover, the effects of Zea on GBM cells proliferation could be blocked by VEGFR2 kinase inhibitor SU5408. These results suggest that Zea may hinder GBM angiogenesis and tumor growth through down-regulating a cascade of oncogenic signaling pathways, both through the inhibition of angiogenesis and the anti-tumor mechanism of a direct cytotoxic effect. Besides, Zea inhibits GBM angiogenesis and tumor growth exemplified through a xenograft mouse model in vivo. CONCLUSION: Zea impairs angiogenesis and tumor growth of GBM both in vitro and in vivo. It can be declared that Zea is a potential valuable anticancer candidate for the future treatment strategy of GBM.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Ratos , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Zeaxantinas/farmacologia , Caspase 3 , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiogênese , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores da Angiogênese/farmacologia , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Antineoplásicos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Movimento Celular
6.
Physiol Plant ; 176(3): e14332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38710502

RESUMO

Plant cytochrome P450 (CYP) superfamily, the largest enzyme metabolism family, has been identified in many species and plays a vital role in plant development and stress response via secondary metabolite biosynthesis. A comprehensive identification and functional investigation of CYPs in tomato plants would contribute to deeper understanding of their biological significance. In this study, 268 tomato CYP genes were identified and found to be unevenly located on 12 chromosomes. Based on the phylogenetic analysis, these 268 SlCYPs were classed into two distinct clades (A-type and non-A-type) and nine clans, including 48 families. Moreover, 67 tandem and 22 WGD (whole genome duplication)/segmental duplication events were detected, of which 12 SlCYP genes experienced both WGD/segmental and tandem duplication events, indicating that tandem duplication plays a major role in the expansion of the SlCYP family. Besides, 48 pairs containing 41 SlCYP and 44 AtCYP genes were orthologous, while 216 orthologous pairs were obtained between tomato and potato. The expression level of all SlCYP genes in tomato tissues at different development stages was analyzed, and most expressed SlCYPs showed a tissue-specific pattern. Meanwhile, 143 differentially expressed SlCYPs were identified under cold stress. Furthermore, the RT-qPCR results indicated that SlCYPs may be involved in fruit ripening and cold tolerance in tomato seedlings. These findings provide valuable insights into the evolutionary relationships and functional characteristics of SlCYPs, which can be utilized for further investigation of fruit metabolic pathways and cold tolerance in tomato.


Assuntos
Sistema Enzimático do Citocromo P-450 , Frutas , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum lycopersicum/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta/genética , Resposta ao Choque Frio/genética , Duplicação Gênica , Cromossomos de Plantas/genética , Temperatura Baixa
7.
Phys Chem Chem Phys ; 26(16): 12652-12660, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38597792

RESUMO

In this paper, we introduce a novel molecular switch paradigm that integrates spin crossover complexes with the Fano resonance effect. Specifically, by performing density-functional theory calculations, the feasibility of achieving Fano resonance using spin crossover complexes is demonstrated in our designed molecular junctions using the complex {Fe[H2B(pz)2]2[Bp(bipy)]} [pz = 1-pyrazolyl, Bp(bipy) = bis(phenylethynyl)(2,2'-bipyridine)]. It is further revealed that the Fano resonance, particularly the Fano dip, is most prominent in the junction with cobalt tips among all the schemes, together with the spin-filtering effect. Most importantly, this junction of cobalt tips is able to exhibit three distinct conductance states, which are controlled by the modulation of Fano resonance due to the spin-state transition of the complex and the applied gate voltage. Such a molecular switch paradigm holds potential for applications in logic gates, memory units, sensors, thermoelectrics, and beyond.

8.
Phys Chem Chem Phys ; 26(4): 3253-3262, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38196390

RESUMO

Ferroelectric polarization-controlled band alignment can be realized in van der Waals heterostructures (vdWHs), which can be used to create new types of ferroelectric tunnel junctions (FTJs). In this work, we design six probable configurations of two-dimensional vdWHs based on a two-dimensional α-In2Se3 ferroelectric material which has two opposite polarization states P↑ and P↓, and the semiconductor MoTe2. First-principles calculations show robust ferroelectric polarization-controlled switching behavior between the high conductance state in configuration AA-P↓ and the low conductance state in configuration AA-P↑ in the most stable AA stacked vdWHs. Based on this vdWH, a two-dimensional transverse FTJ with AA-P↓ or AA-P↑ as the tunneling barrier and (In0.5Sn0.5)2Se3 monolayers (n-type doped) as electrodes is designed. The tunneling electroresistance ratio of the FTJs at the Fermi level reaches 1.22 × 104% when the tunneling barrier contains two repeating units N = 2 and can be greatly increased by increasing the thickness of the ferroelectric layer. Analysis of the work function, charge redistribution, and local density of states is performed to interpret the above phenomena. The findings suggest the great potential of the AA stacked α-In2Se3/MoTe2 vdWH in the design of high-performance FTJs and application in high-density non-volatile memory devices.

9.
Anesth Analg ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412109

RESUMO

BACKGROUND: Propofol is commonly used for procedural sedation but may increase side effects in a dose-dependent manner. Remimazolam, an ultrashort-acting benzodiazepine, has been approved for procedural sedation but may delay awakening. This study tested the hypothesis that remimazolam as a supplement reduces effect-site propofol concentration (Ceprop) required to suppress response to cervical dilation in patients undergoing hysteroscopy. METHODS: One hundred and fifty patients who were scheduled for hysteroscopy were randomized to receive 0, 0.05, 0.1, 0.15, or 0.2 mg·kg-1 intravenous remimazolam, followed by a bolus of sufentanil 0.15 µg⋅kg-1, and a target-controlled propofol infusion. The initial target Ceprop was 3.5 µg·mL-1 and was increased or decreased in subsequent patients by steps of 0.5 µg·mL-1 according to whether there was loss of response to cervical dilation in the previous patient. We used up-down sequential analysis to determine values of Ceprop that suppressed response to cervical dilation in 50% of patients (EC50). RESULTS: The EC50 of propofol for suppressing response to cervical dilation was lower in patients given 0.1 mg·kg-1 (2.08 [95% confidence interval, CI, 1.88-2.28] µg·mL-1), 0.15 mg⋅kg-1 (1.83 [1.56-2.10] µg·mL-1), and 0.2 mg⋅kg-1 (1.43 [1.27-1.58] µg·mL-1) remimazolam than those given 0 mg⋅kg-1 (3.67 [3.49-3.86] µg·mL-1) or 0.05 mg⋅kg-1 (3.47 [3.28-3.67] µg·mL-1) remimazolam (all were P < .005). Remimazolam at doses of 0.1, 0.15, and 0.2 mg·kg-1 decreased EC50 of propofol by 43.3% (95% CI, 41.3%-45.5%), 50.3% (48.0%-52.8%), and 61.2% (58.7%-63.8%), respectively, from baseline (remimazolam 0 mg⋅kg-1). Propofol consumption was lower in patients given 0.1 mg⋅kg-1 (4.15 [3.51-5.44] mg·kg-1), 0.15 mg⋅kg-1 (3.54 [3.16-4.46] mg·kg-1), and 0.2 mg⋅kg-1 (2.74 [1.73-4.01] mg·kg-1) remimazolam than those given 0 mg⋅kg-1 (6.09 [4.99-7.35] mg·kg-1) remimazolam (all were P < .005). Time to anesthesia emergence did not differ significantly among the 5 groups. CONCLUSIONS: For women undergoing hysteroscopic procedures, remimazolam at doses from 0.1 to 0.2 mg·kg-1 reduced the EC50 of propofol inhibiting response to cervical dilation and the total propofol requirement. Whether the combination could improve perioperative outcomes deserves further investigation.

10.
Cell Mol Biol Lett ; 29(1): 4, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172648

RESUMO

Signal transducer and activator of transcription 3 (STAT3), as a key node in numerous carcinogenic signaling pathways, is activated in various tumor tissues and plays important roles in tumor formation, metastasis, and drug resistance. STAT3 is considered a potential subtarget for tumor therapy. Noncoding RNA (ncRNA) is a special type of RNA transcript. Transforming from "junk" transcripts into key molecules involved in cell apoptosis, growth, and functional regulation, ncRNA has been proven to be closely related to various epithelial-mesenchymal transition and drug resistance processes in tumor cells over the past few decades. Research on the relationship between transcription factor STAT3 and ncRNAs has attracted increased attention. To date, existing reviews have mainly focused on the regulation by ncRNAs on the transcription factor STAT3; there has been no review of the regulation by STAT3 on ncRNAs. However, understanding the regulation of ncRNAs by STAT3 and its mechanism is important to comprehensively understand the mutual regulatory relationship between STAT3 and ncRNAs. Therefore, in this review, we summarize the regulation by transcription factor STAT3 on long noncoding RNA, microRNA, and circular RNA and its possible mechanisms. In addition, we provide an update on research progress on the regulation of STAT3 by ncRNAs. This will provide a new perspective to comprehensively understand the regulatory relationship between transcription factor STAT3 and ncRNAs, as well as targeting STAT3 or ncRNAs to treat diseases such as tumors.


Assuntos
MicroRNAs , RNA Longo não Codificante , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , RNA não Traduzido/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836559

RESUMO

The control of apical dominance involves auxin, strigolactones (SLs), cytokinins (CKs), and sugars, but the mechanistic controls of this regulatory network are not fully understood. Here, we show that brassinosteroid (BR) promotes bud outgrowth in tomato through the direct transcriptional regulation of BRANCHED1 (BRC1) by the BR signaling component BRASSINAZOLE-RESISTANT1 (BZR1). Attenuated responses to the removal of the apical bud, the inhibition of auxin, SLs or gibberellin synthesis, or treatment with CK and sucrose, were observed in bud outgrowth and the levels of BRC1 transcripts in the BR-deficient or bzr1 mutants. Furthermore, the accumulation of BR and the dephosphorylated form of BZR1 were increased by apical bud removal, inhibition of auxin, and SLs synthesis or treatment with CK and sucrose. These responses were decreased in the DELLA-deficient mutant. In addition, CK accumulation was inhibited by auxin and SLs, and decreased in the DELLA-deficient mutant, but it was increased in response to sucrose treatment. CK promoted BR synthesis in axillary buds through the action of the type-B response regulator, RR10. Our results demonstrate that BR signaling integrates multiple pathways that control shoot branching. Local BR signaling in axillary buds is therefore a potential target for shaping plant architecture.


Assuntos
Brassinosteroides/metabolismo , Transdução de Sinais , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo
12.
Plant J ; 112(5): 1238-1251, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36271694

RESUMO

Ethylene (ET) signaling plays a critical role in the ripening of climacteric fruits such as tomato. Brassinosteroids (BRs) were found to promote the ripening of both climacteric and non-climacteric fruits. However, the mechanism of interaction between ET and BRs during fruit ripening is unclear. Here, we found that BR synthesis and signaling increased after the onset of fruit ripening. Overexpression of the BR synthesis gene DWARF (DWF) promotedfruit softening, lycopene synthesis and ET production, whereas defect of DWF inhibited them. BRASSINAZOLE RESISTANT 1 (BZR1) as a key component of BR signaling, enhanced fruit lycopene content by directly activating the transcription of PSY1 gene. Interestingly, the increases in BR synthesis and BZR1 protein levels were dependent on ET signaling. Knocking out the ET-induced APETALA2a (AP2a) suppressed the expression of DWF and BR accumulation. Molecular assays demonstrated that AP2a was a positive regulator of DWF expression. Furthermore, 28-homobrassinolide, a bioactive BR, partially compensated the defects of lycopene accumulation and expression of PSY1 in ap2a mutant fruits. The results demonstrated that AP2a mediated ET signaling to regulate BR synthesis and signaling. BRs played critical roles in lycopene synthesis after onset of fruit ripening.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Frutas/metabolismo , Licopeno/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Carotenoides/metabolismo , Plantas Geneticamente Modificadas/genética , Brassinosteroides/metabolismo
13.
Plant J ; 111(2): 440-456, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569132

RESUMO

Because of a high sensitivity to cold, both the yield and quality of tomato (Solanum lycopersicum L.) are severely restricted by cold stress. The NAC transcription factor (TF) family has been characterized as an important player in plant growth, development, and the stress response, but the role of NAC TFs in cold stress and their interaction with other post-transcriptional regulators such as microRNAs in cold tolerance remains elusive. Here, we demonstrated that SlNAM3, the predicted target of Sl-miR164a/b-5p, improved cold tolerance as indicated by a higher maximum quantum efficiency of photosystem II (Fv/Fm), lower relative electrolyte leakage, and less wilting in SlNAM3-overexpression plants compared to wild-type. Further genetic and molecular confirmation revealed that Sl-miR164a/b-5p functioned upstream of SlNAM3 by inhibiting the expression of the latter, thus playing a negative role in cold tolerance. Interestingly, this role is partially mediated by an ethylene-dependent pathway because either Sl-miR164a/b-5p silencing or SlNAM3 overexpression improved cold tolerance in the transgenic lines by promoting ethylene production. Moreover, silencing of the ethylene synthesis genes, SlACS1A, SlACS1B, SlACO1, and SlACO4, resulted in a significant decrease in cold tolerance. Further experiments demonstrated that NAM3 activates SlACS1A, SlACS1B, SlACO1, and SlACO4 transcription by directly binding to their promoters. Taken together, the present study identified the miR164a-NAM3 module conferring cold tolerance in tomato plants via the direct regulation of SlACS1A, SlACS1B, SlACO1, and SlACO4 expression to induce ethylene synthesis.


Assuntos
Solanum lycopersicum , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Mol Med ; 29(1): 20, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747131

RESUMO

Fibroblasts are highly heterogeneous mesenchymal stromal cells, and different fibroblast subpopulations play different roles. A subpopulation of fibroblasts expressing CD90, a 25-37 kDa glycosylphosphatidylinositol anchored protein, plays a dominant role in the fibrotic and pro-inflammatory state. In this review, we focused on CD90+ fibroblasts, and their roles and possible mechanisms in disease processes. First, the main biological functions of CD90+ fibroblasts in inducing angiogenesis and maintaining tissue homeostasis are described. Second, the role and possible mechanism of CD90+ fibroblasts in inducing pulmonary fibrosis, inflammatory arthritis, inflammatory skin diseases, and scar formation are introduced, and we discuss how CD90+ cancer-associated fibroblasts might serve as promising cancer biomarkers. Finally, we propose future research directions related to CD90+ fibroblasts. This review will provide a theoretical basis for the diagnosis and treatment CD90+ fibroblast-related disease.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Humanos , Neoplasias/metabolismo , Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Biomarcadores Tumorais/metabolismo
15.
Plant Biotechnol J ; 21(1): 219-231, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36204970

RESUMO

The post-translational modification of proteins enables cells to respond promptly to dynamic stimuli by controlling protein functions. In higher plants, SPINDLY (SPY) and SECRET AGENT (SEC) are two prominent O-glycosylation enzymes that have both unique and overlapping roles; however, the effects of their O-glycosylation on fruit ripening and the underlying mechanisms remain largely unknown. Here we report that SlSPY affects tomato fruit ripening. Using slspy mutants and two SlSPY-OE lines, we provide biological evidence for the positive role of SlSPY in fruit ripening. We demonstrate that SlSPY regulates fruit ripening by changing the ethylene response in tomato. To further investigate the underlying mechanism, we identify a central regulator of ethylene signalling ETHYLENE INSENSITIVE 2 (EIN2) as a SlSPY interacting protein. SlSPY promotes the stability and nuclear accumulation of SlEIN2. Mass spectrometry analysis further identified that SlEIN2 has two potential sites Ser771 and Thr821 of O-glycans modifications. Further study shows that SlEIN2 is essential for SlSPY in regulating fruit ripening in tomatoes. Collectively, our findings reveal a novel regulatory function of SlSPY in fruit and provide novel insights into the role of the SlSPY-SlEIN2 module in tomato fruit ripening.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/genética
16.
New Phytol ; 237(3): 870-884, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36285381

RESUMO

Plants adapt to cold stress at the physiological and biochemical levels, thus enabling them to maintain growth and development. However, the molecular mechanism of fine-tuning cold signals remains largely unknown. We addressed the function of SlSEC1-SlC3H39 module in cold tolerance by using SlSEC1 and SlC3H39 knockout and overexpression tomato lines. A tandem CCCH zinc-finger protein SlC3H39 negatively modulates cold tolerance in tomato. SlC3H39 binds to AU-rich elements in the 3'-untranslated region (UTR) to induce mRNA degradation and regulates gene expression post-transcriptionally. We further validate that SlC3H39 participates in post-transcriptional regulation of a variety of cold-responsive genes. An O-linked N-acetylglucosamine transferase SlSEC1 physically interacts with SlC3H39 proteins and negatively regulates cold tolerance in tomato. Further study shows that SlSEC1 is essential for SlC3H39 protein stability and maintains SlC3H39 function in cold tolerance. Genetic analysis shows that SlC3H39 is epistatic to SlSEC1 in cold tolerance. The findings indicate that SlC3H39 negatively modulates plant cold tolerance through post-transcriptional regulation by binding to cold-responding mRNA 3'-UTR and reducing those transcripts. SlSEC1 promotes the O-GlcNAclation status of SlC3H39 and maintains SlC3H39 function in cold tolerance. Taken together, we propose a SlSEC1-SlC3H39 module, which allows plants to balance defense responses and growth processes.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Resposta ao Choque Frio/genética , Estabilidade de RNA/genética , Regulação da Expressão Gênica de Plantas , Temperatura Baixa , Plantas Geneticamente Modificadas/metabolismo
17.
New Phytol ; 239(5): 1887-1902, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37322592

RESUMO

B-box (BBX) proteins are an important class of zinc finger transcription factors that play a critical role in plant growth and stress response. However, the mechanisms of how BBX proteins participate in the cold response in tomato remain unclear. Here, using approaches of reverse genetics, biochemical and molecular biology we characterized a BBX transcription factor, SlBBX17, which positively regulates cold tolerance in tomato (Solanum lycopersicum). Overexpressing SlBBX17 enhanced C-repeat binding factor (CBF)-dependent cold tolerance in tomato plants, whereas silencing SlBBX17 increased plant susceptibility to cold stress. Crucially, the positive role of SlBBX17 in CBF-dependent cold tolerance was dependent on ELONGATED HYPOCOTYL5 (HY5). SlBBX17 physically interacted with SlHY5 to directly promote the protein stability of SlHY5 and subsequently increased the transcriptional activity of SlHY5 on SlCBF genes under cold stress. Further experiments showed that cold-activated mitogen-activated protein kinases, SlMPK1 and SlMPK2, also physically interact with and phosphorylate SlBBX17 to enhance the interaction between SlBBX17 and SlHY5, leading to enhanced CBF-dependent cold tolerance. Collectively, the study unveiled a mechanistic framework by which SlMPK1/2-SlBBX17-SlHY5 regulated transcription of SlCBFs to enhance cold tolerance, thereby shedding light on the molecular mechanisms of how plants respond to cold stress via multiple transcription factors.


Assuntos
Solanum lycopersicum , Fosforilação , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Temperatura Baixa , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Plant Cell Environ ; 46(6): 1921-1934, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36891914

RESUMO

Auxins are a class of phytohormones with roles involved in the establishment and maintenance of the arbuscular mycorrhizal symbiosis (AMS). Auxin response factors (ARFs) and Auxin/Indole-acetic acids (AUX/IAAs), as two transcription factors of the auxin signaling pathway, coregulate the transcription of auxin response genes. However, the interrelation and regulatory mechanism of ARFs and AUX/IAAs in regulating AMS are still unclear. In this study, we found that the content of auxin in tomato roots increased sharply and revealed the importance of the auxin signaling pathway in the early stage of AMS. Notably, SlARF6 was found to play a negative role in AMF colonization. Silencing SlARF6 significantly increased the expression of AM-marker genes, as well as AMF-induced phosphorus uptake. SlIAA23 could interact with SlARF6 in vivo and in vitro, and promoted the AMS and phosphorus uptake. Interestingly, SlARF6 and SlIAA23 played a contrary role in strigolactone (SL) synthesis and accumulation in AMF-colonized roots of tomato plants. SlARF6 could directly bind to the AuxRE motif of the SlCCD8 promoter and inhibited its transcription, however, this effect was attenuated by SlIAA23 through interaction with SlARF6. Our results suggest that SlIAA23-SlARF6 coregulated tomato-AMS via an SL-dependent pathway, thus affecting phosphorus uptake in tomato plants.


Assuntos
Micorrizas , Solanum lycopersicum , Micorrizas/fisiologia , Solanum lycopersicum/genética , Simbiose/genética , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Fósforo/metabolismo
19.
Opt Express ; 31(22): 36263-36272, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017781

RESUMO

Pure spin current, exhibiting no Joule heat and self-powered characteristics, has recently attracted intensive attention. Here, through first-principles calculations and symmetry analysis, we propose a new method to generate photoelectric pure spin current in carbon hexagonal connected three zigzag graphene nanoribbons (ZGNRs) via magnetic field modulation. Specifically, a device with centro-symmetry is designed, which consists of three ZGNRs using two carbon hexagons as connectors ('2-C6'). When the edge spin states of the three ZGNRs from left to right are modulated to AFM-AFM-AFM or FM-AFM-FM by magnetic fields, excellent pure spin currents are obtained which are independent of the photon energy and the angle of the linearly polarized light. However, when the edge spin states are FM-FM-FM orderly, the photocurrent is nearly zero and can be neglected. Analysis show that the first two spin magnetic structures own the spatial inversion antisymmetric spin density which is the origin of stable pure spin currents, while the FM-FM-FM structure owns Cs symmetric spin density, leading to the nearly zero photocurrent. Our findings provide a scheme for obtaining pure spin currents by changing the spin states of the graphene nanoribbons via magnetic field modulation, which is of great importance for the design of spintronic devices.

20.
J Exp Bot ; 74(19): 6119-6130, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37220091

RESUMO

Post-translational modifications affect protein functions and play key roles in controlling biological processes. Plants have unique types of O-glycosylation that are different from those of animals and prokaryotes, and they play roles in modulating the functions of secretory proteins and nucleocytoplasmic proteins by regulating transcription and mediating localization and degradation. O-glycosylation is complex because of the dozens of different O-glycan types, the widespread existence of hydroxyproline (Hyp), serine (Ser), and threonine (Thr) residues in proteins attached by O-glycans, and the variable modes of linkages connecting the sugars. O-glycosylation specifically affects development and environmental acclimatization by affecting diverse physiological processes. This review describes recent studies on the detection and functioning of protein O-glycosylation in plants, and provides a framework for the O-glycosylation network that underlies plant development and resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA