Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(19): 193602, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38804940

RESUMO

We demonstrate the emergence of nonreciprocal superradiant phase transitions and novel multicriticality in a cavity quantum electrodynamics system, where a two-level atom interacts with two counterpropagating modes of a whispering-gallery-mode microcavity. The cavity rotates at a certain angular velocity and is directionally squeezed by a unidirectional parametric pumping χ^{(2)} nonlinearity. The combination of cavity rotation and directional squeezing leads to nonreciprocal first- and second-order superradiant phase transitions. These transitions do not require ultrastrong atom-field couplings and can be easily controlled by the external pump field. Through a full quantum description of the system Hamiltonian, we identify two types of multicritical points in the phase diagram, both of which exhibit controllable nonreciprocity. These results open a new door for all-optical manipulation of superradiant transitions and multicritical behaviors in light-matter systems, with potential applications in engineering various integrated nonreciprocal quantum devices.

2.
Opt Lett ; 44(3): 630-633, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702696

RESUMO

Mass sensing connects mass variation to a frequency shift of a mechanical oscillator, whose limitation is determined by its mechanical frequency resolution. Here we propose a method to enlarge a minute mechanical frequency shift, which is smaller than the linewidth of the mechanical oscillator, into a huge frequency shift of the normal mode. Explicitly, a frequency shift of about 20 Hz of the mechanical oscillator would be magnified to be a 1 MHz frequency shift in the normal mode, which increases it by 5 orders of magnitude. This enhancement relies on the sensitivity appearing near the quantum critical point of the electromechanical system. We show that a mechanical frequency shift of 1 Hz could be resolved with a mechanical resonance frequency ωb=11×2π MHz. Namely, an ultrasensitive mechanical mass sensor of the resolution Δm/m∼2Δωb/ωb∼10-8 could be achieved. Our method has potential application in mass sensing and other techniques based on the frequency shift of a mechanical oscillator.

3.
Opt Express ; 25(25): 31718-31729, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245843

RESUMO

We investigate theoretically the model of two "qubits" system (one qubit having an auxiliary level) interacting with a single-mode resonator in the ultrastrong coupling regime. We show that a single photon could simultaneously excite two qubits without breaking the parity symmetry of system by properly encoding the excited states of qubits. The optimal parameter regime for achieving high probability approaching one is identified in the case of ignoring the system dissipation. Moreover, using experimentally feasible parameters, we also analyze the dissipation dynamics of the system, and present the realization of two-qubit excitation induced by single-photon. This work offers an alternative approach to realize the single-photon-induced two qubits excitation, which should advance the development of single-photon quantum technologies and have potential applications in quantum information science.

4.
Fundam Res ; 3(1): 63-74, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933568

RESUMO

Cavity optomechanics provides a powerful platform for observing many interesting classical and quantum nonlinear phenomena due to the radiation-pressure coupling between its optical and mechanical modes. In particular, the chaos induced by optomechanical nonlinearity has been of great concern because of its importance both in fundamental physics and potential applications ranging from secret information processing to optical communications. This review focuses on the chaotic dynamics in optomechanical systems. The basic theory of general nonlinear dynamics and the fundamental properties of chaos are introduced. Several nonlinear dynamical effects in optomechanical systems are demonstrated. Moreover, recent remarkable theoretical and experimental efforts in manipulating optomechanical chaotic motions are addressed. Future perspectives of chaos in hybrid systems are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA