Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Front Pharmacol ; 15: 1337057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327989

RESUMO

Introduction: Hepatic steatosis is a hepatic pathological change closely associated with metabolic disorders, commonly observed in various metabolic diseases such as metabolic syndrome (MetS), with a high global prevalence. Dai-Zong-Fang (DZF), a traditional Chinese herbal formula, is widely used in clinical treatment for MetS, exhibiting multifaceted effects in reducing obesity and regulating blood glucose and lipids. This study aims to explore the mechanism by which DZF modulates the gut microbiota and reduces hepatic steatosis based on the gut-liver axis. Methods: This study utilized db/db mice as a disease model for drug intervention. Body weight and fasting blood glucose were monitored. Serum lipid and transaminase levels were measured. Insulin tolerance test was conducted to assess insulin sensitivity. Hematoxylin and eosin (HE) staining was employed to observe morphological changes in the liver and intestine. The degree of hepatic steatosis was evaluated through Oil Red O staining and hepatic lipid determination. Changes in gut microbiota were assessed using 16S rRNA gene sequencing. Serum lipopolysaccharide (LPS) levels were measured by ELISA. The expression levels of intestinal tight junction proteins, intestinal lipid absorption-related proteins, and key proteins in hepatic lipid metabolism were examined through Western blot and RT-qPCR. Results: After DZF intervention, there was a decrease in body weight, alleviation of glucose and lipid metabolism disorders, reduction in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, and mitigation of insulin resistance in mice. DZF significantly modulated the diversity of the gut microbiota, with a notable increase in the abundance of the Bacteroidetes phylum. PICRUSt indicated that DZF influenced various functions in gut microbiota, including carbohydrate and amino acid metabolism. Following DZF intervention, serum LPS levels decreased, intestinal pathological damage was reduced, and the expression of intestinal tight junction protein occludin was increased, while the expression of intestinal lipid absorption-related proteins cluster of differentiation 36 (CD36) and apolipoprotein B48 (ApoB48) were decreased. In the liver, DZF intervention resulted in a reduction in hepatic steatosis and lipid droplets, accompanied by a decrease fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1) and fatty acid transport protein 2 (FATP2). Conversely, there was an increase in the expression of the fatty acid oxidation-related enzyme carnitine palmitoyltransferase-1𝛂 (CPT-1𝛂). Conclusion: DZF can regulate the structure and function of the intestinal microbiota in db/db mice. This ameliorates intestinal barrier damage and the detrimental effects of endotoxemia on hepatic metabolism. DZF not only inhibits intestinal lipid absorption but also improves hepatic lipid metabolism from various aspects, including de novo lipogenesis, fatty acid uptake, and fatty acid oxidation. This suggests that DZF may act on the liver and intestine as target organs, exerting its effects by improving the intestinal microbiota and related barrier and lipid absorption functions, ultimately ameliorating hepatic steatosis and enhancing overall glucose and lipid metabolism.

3.
J Ethnopharmacol ; 325: 117768, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38253275

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS), a lipid-induced inflammatory condition of the arteries, is a primary contributor to atherosclerotic cardiovascular diseases including stroke. Arctium lappa L. leaf (ALL), an edible and medicinal herb in China, has been documented and commonly used for treating stroke since the ancient times. However, the elucidations on its anti-AS effects and molecular mechanism remain insufficient. AIM OF THE STUDY: To investigate the AS-ameliorating effects and the underlying mechanism of action of an ethanolic extract of leaves of Arctium lappa L. (ALLE). MATERIALS AND METHODS: ALLE was reflux extracted using with 70% ethanol. An HPLC method was established to monitor the quality of ALLE. High fat diet (HFD) and vitamin D3-induced experimental AS in rats were used to determine the in vivo effects; and oxidized low-density lipoprotein-induced RAW264.7 macrophage foam cells were used for in vitro assays. Simvatatin was used as positive control. Biochemical assays were implemented to ascertain the secretions of lipids and pro-inflammatory mediators. Haematoxylin-eosin (H&E) and Oil red O stains were employed to assess histopathological alterations and lipid accumulation conditions, respectively. CCK-8 assays were used to measure cytotoxicity. Immunoblotting assay was conducted to measure protein levels. RESULTS: ALLE treatment significantly ameliorated lipid deposition and histological abnormalities of aortas and livers in AS rats; improved the imbalances of serum lipids including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C); notably attenuated serum concentrations of inflammation-associated cytokines/molecules including TNF-α, IL-6, IL-1ß, VCAM-1, ICAM-1and MMP-9. Mechanistic studies demonstrated that ALLE suppressed the phosphorylation/activation of PI3K, Akt and NF-κB in AS rat aortas and in cultured foam cells. Additionally, the PI3K agonist 740Y-P notably reversed the in vitro inhibitory effects of ALLE on lipid deposition, productions of TC, TNF-α and IL-6, and protein levels of molecules of PI3K/Akt and NF-κB singnaling pathways. CONCLUSIONS: ALLE ameliorates HFD- and vitamin D3-induced experimental AS by modulating lipid metabolism and inflammatory responses, and underlying mechanisms involves inhibition of the PI3K/Akt and NF-κB singnaling pathways. The findings of this study provide scientific justifications for the traditional application of ALL in managing atherosclerotic diseases.


Assuntos
Arctium , Aterosclerose , Fragmentos de Peptídeos , Receptores do Fator de Crescimento Derivado de Plaquetas , Acidente Vascular Cerebral , Ratos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Metabolismo dos Lipídeos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Aterosclerose/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Lipídeos , Colesterol/farmacologia , Etanol/farmacologia , Lipoproteínas LDL/metabolismo , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA