Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Gynecol Obstet ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814453

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM) poses significant health risks for both mothers and children, contributing to long-term complications such as type 2 diabetes and cardiovascular disease. This study explores the potential of microRNAs (miRNAs) as biomarkers for GDM by analyzing peripheral blood samples from GDM patients. METHOD: Ten samples, including peripheral blood from 5 GDM patients and 5 controls, were collected to perform the RNA sequencing analysis. Differentially expressed miRNAs were further validated by quantitative real-time polymerase chain reaction. RESULTS: A total of 2287 miRNAs were identified, 229 of which showed differential expression. Validation by qRT-PCR confirmed significant up-regulation of miR-5193, miR-5003-3p, miR-3127-5p, novel-miR-96, miR-6734-5p, and miR-122-5p, while miR-10395-3p was down-regulated. Bioinformatics analyses revealed the involvement of these miRNAs in pathways associated with herpes simplex virus 1 infection. CONCLUSION: This study provides insights into the differential expression of miRNAs in GDM patients and their potential roles in disease pathogenesis. It suggests that the differentially expressed miRNAs could serve as potential biomarkers for GDM, shedding light on the complex molecular mechanisms involved.

2.
Langmuir ; 39(32): 11439-11447, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37524048

RESUMO

To decrease the dipole polarization rate and reduce the dielectric constant of poly(aryl ether ketone) (PAEK) resin, 1,4-di(4-fluorobenzoyl) cyclohexane (DFBCH), a weakly polarizing cyclohexane-based monomer, was designed and synthesized as the primary reactant. The bulky fluorene group was incorporated to increase the free volume of the resin, further reducing the dielectric constant. Additionally, hydroquinone with a symmetric and regular structure was utilized to enhance the molecular chain's regularity and reduce dipole relaxation, further lowering the resin's dielectric constant and dielectric loss. The PFQEKs series resins exhibited excellent thermal stability with glass transition temperature (Tg) ranging from 222 to 239 °C and 5% weight loss (Td5%) ranging from 458 to 463 °C, with different monomer ratios. As the hydroquinone content increased, the dielectric constant (Dk) and dielectric loss (Df) of the resin decreased significantly, with Dk ranging from 2.92 to 2.77 and Df ranging from 0.011 to 0.008 at 10 GHz.

3.
Indian J Microbiol ; 63(1): 106-119, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37179577

RESUMO

There is a symbiotic relationship between gut microbiota and human beings. Imbalance of the gut microbiota will cause pathological damages to humans. Although many risk factors are associated with missed abortion (MA), the pathological mechanism of it is still unclear. Here, we analyzed gut flora of the patients with MA by S16 high-throughput sequencing. The possible pathogenic mechanisms of the MA were explored. Fecal samples from 14 healthy controls and 16 MA patients were collected to do 16S rRNA gene high-throughput sequencing analysis. The abundance of the Bacteroidetes, Proteobacteria, Actinobacteria, Escherichia, Streptococcus_ Salivarius, and Lactobacillus was significantly reduced in the MA group, while, the abundance of the Klebsiella was significantly increased in the MA patients. The Ruminococcaceae and [Eubacterium]_coprostanoligenes_group were found only in the specimens of the MA patients. The Fabrotax function prediction analysis showed that four photosynthesis function bacteria (cyanobateria, oxygenic_photoautotrophy, photoautotrophy, and phototrophy) only existed in the MA group. In the analysis of the BugBase microbiome function prediction, the Escherichia of the MA group is significantly reduced compared to that of the healthy controls in the items of that Contains_Mobile_Elements, Facultatively_Anaerobic, Forms_Biofilms, Potentially_Pathogenic.png, Gram_Nagative, and Stress_Tolerant_relabundance. These alterations may affect the stability of the host's immune, neural, metabolic and other systems by interfering with the balance of the gut microbiota or by the metabolites of those bacteria, causing the MA. This study explored the possible pathogenic factors of the gut microbiota of the MA. The results provide evidence to figure out the pathogenesis of the MA.

4.
Biosci Biotechnol Biochem ; 86(11): 1506-1514, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36066914

RESUMO

Isofurans (IsoFs) are a series of novel discovered lipid peroxidation products. This study focused on the investigation of the angiogenic property of IsoF. MTT stain assay indicated that 1 µm IsoF had the most bioactivity in rat brain endothelial cells (RBECs). IsoF significantly promoted cellular proliferation and migration and remarkably decreased staurosporine-induced apoptosis by TUNEL assay in the RBECs. It successfully up-regulated rat aortic vascularization and choroid explant sprouting, extracellular regulated protein kinases (ERK)1/2, and triggered calcium release. RT-PCR examination indicated that IsoF up-regulated tumor necrosis factor (TNF)α, angiopoietin-1 receptor (Tie2), and vascular endothelial growth factor (VEGF)-A, but did not interfere with caspase 2 and VEGF-C in the RBECs. IsoF has pro-angiogenic activity. Calcium release and ERK1/2 phosphorylation may be involved in the signaling of the IsoF-induced up-regulation of TNFα, Tie2, and VEGF-A, which could be the molecular mechanism of the pro-angiogenic activity of the IsoF.


Assuntos
Angiopoietina-1 , Fator A de Crescimento do Endotélio Vascular , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiopoietina-1/genética , Fator C de Crescimento do Endotélio Vascular , Caspase 2 , Células Endoteliais/metabolismo , Fator de Necrose Tumoral alfa , Cálcio/metabolismo , Estaurosporina , Neovascularização Fisiológica
5.
Am J Pathol ; 189(11): 2340-2356, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430465

RESUMO

Retinopathy of prematurity (ROP) is characterized by an initial retinal avascularization, followed by pathologic neovascularization. Recently, choroidal thinning has also been detected in children formerly diagnosed with ROP; a similar sustained choroidal thinning is observed in ROP models. But the mechanism underlying the lack of choroidal revascularization remains unclear and was investigated in an oxygen-induced retinopathy (OIR) model. In OIR, evidence of senescence was detected, preceded by oxidative stress in the choroid and the retinal pigment epithelium. This was associated with a global reduction of proangiogenic factors, including insulin-like growth factor 1 receptor (Igf1R). Coincidentally, tumor suppressor p53 was highly expressed in the OIR retinae. Curtailing p53 activity resulted in reversal of senescence, normalization of Igf1r expression, and preservation of choroidal integrity. OIR-induced down-regulation of Igf1r was mediated at least partly by miR-let-7b as i) let-7b expression was augmented throughout and beyond the period of oxygen exposure, ii) let-7b directly targeted Igf1r mRNA, and iii) p53 knock-down blunted let-7b expression, restored Igf1r expression, and elicited choroidal revascularization. Finally, restoration of Igf1r expression rescued choroid thickness. Altogether, this study uncovers a significant mechanism for defective choroidal revascularization in OIR, revealing a new role for p53/let-7b/IGF-1R axis in the retina. Future investigations on this (and connected) pathway could further our understanding of other degenerative choroidopathies, such as geographic atrophy.


Assuntos
Corioide/irrigação sanguínea , Corioide/efeitos dos fármacos , MicroRNAs/fisiologia , Neovascularização Fisiológica/efeitos dos fármacos , Oxigênio/efeitos adversos , Retinopatia da Prematuridade/genética , Retinopatia da Prematuridade/patologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Corioide/metabolismo , Corioide/patologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Células HEK293 , Humanos , Neovascularização Fisiológica/genética , Oxigênio/farmacologia , Ratos , Ratos Long-Evans , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Retinopatia da Prematuridade/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
6.
Am J Pathol ; 189(9): 1878-1896, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31220454

RESUMO

Ischemic retinopathies are characterized by a progressive microvascular degeneration followed by a postischemic aberrant neovascularization. To reinstate vascular supply and metabolic equilibrium to the ischemic tissue during ischemic retinopathies, a dysregulated production of growth factors and metabolic intermediates occurs, promoting retinal angiogenesis. Glycolysis-derived lactate, highly produced during ischemic conditions, has been associated with tumor angiogenesis and wound healing. Lactate exerts its biological effects via G-protein-coupled receptor 81 (GPR81) in several tissues; however, its physiological functions and mechanisms of action in the retina remain poorly understood. Herein, we show that GPR81, localized predominantly in Müller cells, governs deep vascular complex formation during development and in ischemic retinopathy. Lactate-stimulated GPR81 Müller cells produce numerous angiogenic factors, including Wnt ligands and particularly Norrin, which contributes significantly in triggering inner retinal blood vessel formation. Conversely, GPR81-null mice retina shows reduced inner vascular network formation associated with low levels of Norrin (and Wnt ligands). Lactate accumulation during ischemic retinopathy selectively activates GPR81-extracellular signal-regulated kinase 1/2-Norrin signaling to accelerate inner retinal vascularization in wild-type animals, but not in the retina of GPR81-null mice. Altogether, we reveal that lactate via GPR81-Norrin participates in inner vascular network development and in restoration of the vasculature in response to injury. These findings suggest a new potential therapeutic target to alleviate ischemic diseases.


Assuntos
Células Ependimogliais/patologia , Proteínas do Olho/metabolismo , Isquemia/patologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Doenças Retinianas/patologia , Neovascularização Retiniana/patologia , Vasos Retinianos/patologia , Proteínas Wnt/metabolismo , Animais , Células Ependimogliais/metabolismo , Proteínas do Olho/genética , Isquemia/etiologia , Isquemia/metabolismo , Ácido Láctico/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/metabolismo , Vasos Retinianos/metabolismo , Proteínas Wnt/genética
7.
Int J Biometeorol ; 64(1): 17-27, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31520185

RESUMO

Although it is well-known and established that light plays important roles in plant development, up to now, there is no substantial improvements in how to deal with the light factor of spring phenology under natural condition. By monitoring the local meteorologic data and mature dates of two types (male and female) of flower from four pecan cultivars during 9 years, it was found that the complementary pattern of growing degree day and sunshine duration helped to maintain a threshold of driving force related to the maturity of pecan flower during 9 years. A novel photothermal time model based on the linear combination of growing degree day and sunshine duration was then proposed and validated to interpret the variance of mature dates of pecan cultivars. Comparative analysis showed that the new model had made extremely significant improvements to the traditional thermal time model. In addition, this model introduced the conversion coefficient K, which quantified the effect of light on the flowering drive, and revealed the differences of base temperature among cultivars. This was the first time that sunshine duration instead of photoperiod was adopted to develop into a verified model on spring phenological event of tree species. It will help to model the spring phenologies of other tree species more reasonably.


Assuntos
Carya , Flores , Masculino , Fotoperíodo , Estações do Ano
8.
Zhongguo Zhong Yao Za Zhi ; 45(20): 4875-4881, 2020 Oct.
Artigo em Zh | MEDLINE | ID: mdl-33350259

RESUMO

3-Hydroxy-3-methylglutaryl coenzyme A reductase(HMGR) is the first rate-limiting enzyme in the mevalonic acid(MVA)pathway and it is an important regulatory site in the metabolism of terpenoids in the cytoplasm. In this study, Siraitia grosvenorii that had been pollinated 0 day,1 day,3 days,15 days and 30 days were used as experimental materials. Based on the transcriptome data, two HMGR genes were cloned from S. grosvenorii cDNA and named SgHMGR2(GenBank Accession Numbers MT270447) and SgHMGR3(GenBank Accession Number MT270448). The two genes contain open reading frames(ORFs) of 1 746 bp and 1 782 bp, encoding 582 and 594 amino acids, and their molecular masses are estimated to be 62.7,63.2 kDa, respectively. Isoelectric point are 8.34 and 7.47, both of which do not contain signal peptides, are non-secretory proteins, and have two transmembrane structures. Combining the conserved regions of the proteins and the analysis of the evolutionary tree, it was confirmed that the genes are indeed HMGR family genes. Real-time PCR was used to detect the expression pattern of SgHMGRs at different times after pollination, and the highest expression level was 15 days after pollination. Finally, two full-length SgHMGRs were cloned from S. grosvenorii for the first time, and the differential expression of SgHMGRs at different times after pollination was revealed, providing a research basis for the mining of key enzyme gene elements in the biosynthesis pathway of S. grosvenorii terpenoids.


Assuntos
Cucurbitaceae , Hidroximetilglutaril-CoA Redutases , Sequência de Aminoácidos , Clonagem Molecular , Coenzima A , Cucurbitaceae/genética , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Filogenia
9.
Am J Pathol ; 186(12): 3100-3116, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27768863

RESUMO

Retinopathy of prematurity (ROP), the most common cause of blindness in premature infants, has long been associated with inner retinal alterations. However, recent studies reveal outer retinal dysfunctions in patients formerly afflicted with ROP. We have recently demonstrated that choroidal involution occurs early in retinopathy. Herein, we investigated the mechanisms underlying the choroidal involution and its long-term impact on retinal function. An oxygen-induced retinopathy (OIR) model was used. In vitro and ex vivo assays were applied to evaluate cytotoxic effects of IL-1ß on choroidal endothelium. Electroretinogram was used to evaluate visual function. We found that proinflammatory IL-1ß was markedly increased in retinal pigment epithelium (RPE)/choroid and positively correlated with choroidal degeneration in the early stages of retinopathy. IL-1ß was found to be cytotoxic to choroid in vitro, ex vivo, and in vivo. Long-term effects on choroidal involution included a hypoxic outer neuroretina, associated with a progressive loss of RPE and photoreceptors, and visual deterioration. Early inhibition of IL-1ß receptor preserved choroid, decreased subretinal hypoxia, and prevented RPE/photoreceptor death, resulting in life-long improved visual function in IL-1 receptor antagonist-treated OIR animals. Together, these findings suggest a critical role for IL-1ß-induced choroidal degeneration in outer retinal dysfunction. Neonatal therapy using IL-1 receptor antagonist preserves choroid and prevents protracted outer neuroretinal anomalies in OIR, suggesting IL-1ß as a potential therapeutic target in ROP.


Assuntos
Doenças da Coroide/fisiopatologia , Interleucina-1beta/metabolismo , Retinopatia da Prematuridade/fisiopatologia , Animais , Animais Recém-Nascidos , Corioide/metabolismo , Corioide/fisiopatologia , Doenças da Coroide/etiologia , Doenças da Coroide/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Eletrorretinografia , Endotélio/metabolismo , Humanos , Recém-Nascido , Oxigênio/efeitos adversos , Células Fotorreceptoras/metabolismo , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Retina/fisiopatologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/fisiopatologia , Retinopatia da Prematuridade/induzido quimicamente , Retinopatia da Prematuridade/etiologia , Retinopatia da Prematuridade/metabolismo
10.
J Immunol ; 195(7): 3402-15, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26304990

RESUMO

Preterm birth (PTB) is firmly linked to inflammation regardless of the presence of infection. Proinflammatory cytokines, including IL-1ß, are produced in gestational tissues and can locally upregulate uterine activation proteins. Premature activation of the uterus by inflammation may lead to PTB, and IL-1 has been identified as a key inducer of this condition. However, all currently available IL-1 inhibitors are large molecules that exhibit competitive antagonism properties by inhibiting all IL-1R signaling, including transcription factor NF-κB, which conveys important physiological roles. We hereby demonstrate the efficacy of a small noncompetitive (all-d peptide) IL-1R-biased ligand, termed rytvela (labeled 101.10) in delaying IL-1ß-, TLR2-, and TLR4-induced PTB in mice. The 101.10 acts without significant inhibition of NF-κB, and instead selectively inhibits IL-1R downstream stress-associated protein kinases/transcription factor c-jun and Rho GTPase/Rho-associated coiled-coil-containing protein kinase signaling pathways. The 101.10 is effective at decreasing proinflammatory and/or prolabor genes in myometrium tissue and circulating leukocytes in all PTB models independently of NF-κB, undermining NF-κB role in preterm labor. In this work, biased signaling modulation of IL-1R by 101.10 uncovers a novel strategy to prevent PTB without inhibiting NF-κB.


Assuntos
Inflamação/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Peptídeos/farmacologia , Nascimento Prematuro/prevenção & controle , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Linhagem Celular , Feminino , Interleucina-1beta/imunologia , Camundongos , Miométrio/metabolismo , NF-kappa B/metabolismo , Gravidez , Receptores de Interleucina-1/antagonistas & inibidores , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Útero/imunologia , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Quinases Associadas a rho/antagonistas & inibidores
11.
Biol Reprod ; 95(3): 72, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27512149

RESUMO

Uterine labor requires the conversion of a quiescent (propregnancy) uterus into an activated (prolabor) uterus, with increased sensitivity to endogenous uterotonic molecules. This activation is induced by stressors, particularly inflammation in term and preterm labor. Neuromedin U (NmU) is a neuropeptide known for its uterocontractile effects in rodents. The objective of the study was to assess the expression and function of neuromedin U receptor 2 (NmU-R2) and its ligands NmU and the more potent neuromedin S (NmS) in gestational tissues, and the possible implication of inflammatory stressors in triggering this system. Our data show that NmU and NmS are uterotonic ex vivo in murine tissue, and they dose-dependently trigger labor by acting specifically via NmU-R2. Expression of NmU-R2, NmU, and NmS is detected in murine and human gestational tissues by immunoblot, and the expression of NmS in placenta and of NmU-R2 in uterus increases considerably with gestation age and labor, which is associated with amplified NmU-induced uterocontractile response in mice. NmU- and NmS-induced contraction is associated with increased NmU-R2-coupled Ca++ transients, and Akt and Erk activation in murine primary myometrial smooth muscle cells (mSMCs), which are potentiated with gestational age. NmU-R2 is upregulated in vitro in mSMCs and in vivo in uterus in response to proinflammatory interleukin 1beta (IL1beta), which is associated with increased NmU-induced uterocontractile response and Ca++ transients in murine and human mSMCs; additionally, placental NmS is markedly upregulated in vivo in response to IL1beta. In human placenta at term, immunohistological analysis revealed NmS expression primarily in cytotrophoblasts; furthermore, stimulation with lipopolysaccharide (LPS; Gram-negative endotoxin) markedly upregulates NmS expression in primary human cytotrophoblasts isolated from term placentas. Correspondingly, decidua of women with clinical signs of infection who delivered preterm display significantly higher expression of NmS compared with those without infection. Importantly, in vivo knockdown of NmU-R2 prevents LPS-triggered preterm birth in mice and the associated neonatal mortality. Altogether, our data suggest a critical role for NmU-R2 and its ligands NmU and NmS in preterm labor triggered by infection. We hereby identify NmU-R2 as a relevant target for preterm birth.

12.
Am J Pathol ; 185(2): 581-95, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25478809

RESUMO

Ischemic retinopathies are characterized by sequential vaso-obliteration followed by abnormal intravitreal neovascularization predisposing patients to retinal detachment and blindness. Ischemic retinopathies are associated with robust inflammation that leads to generation of IL-1ß, which causes vascular degeneration and impairs retinal revascularization in part through the liberation of repulsive guidance cue semaphorin 3A (Sema3A). However, retinal revascularization begins as inflammation culminates in ischemic retinopathies. Because inflammation leads to activation of proteases involved in the formation of vasculature, we hypothesized that proteinase-activated receptor (Par)-2 (official name F2rl1) may modulate deleterious effects of IL-1ß. Par2, detected mostly in retinal ganglion cells, was up-regulated in oxygen-induced retinopathy. Surprisingly, oxygen-induced retinopathy-induced vaso-obliteration and neovascularization were unaltered in Par2 knockout mice, suggesting compensatory mechanisms. We therefore conditionally knocked down retinal Par2 with shRNA-Par2-encoded lentivirus. Par2 knockdown interfered with normal revascularization, resulting in pronounced intravitreal neovascularization; conversely, the Par2 agonist peptide (SLIGRL) accelerated normal revascularization. In vitro and in vivo exploration of mechanisms revealed that IL-1ß induced Par2 expression, which in turn down-regulated sequentially IL-1 receptor type I and Sema3A expression through Erk/Jnk-dependent processes. Collectively, our findings unveil an important mechanism by which IL-1ß regulates its own endothelial cytotoxic actions by augmenting neuronal Par2 expression to repress sequentially IL-1 receptor type I and Sema3A expression. Timely activation of Par2 may be a promising therapeutic avenue in ischemic retinopathies.


Assuntos
Proteínas do Olho/metabolismo , Isquemia/metabolismo , Receptores de Trombina/metabolismo , Doenças Retinianas/metabolismo , Neurônios Retinianos/metabolismo , Animais , Proteínas do Olho/agonistas , Proteínas do Olho/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Isquemia/tratamento farmacológico , Isquemia/genética , Isquemia/patologia , Camundongos , Camundongos Knockout , Oligopeptídeos/farmacologia , Receptores de Trombina/agonistas , Receptores de Trombina/genética , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/genética , Doenças Retinianas/patologia , Neurônios Retinianos/patologia , Semaforina-3A/genética , Semaforina-3A/metabolismo
14.
Exp Ther Med ; 27(2): 69, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236433

RESUMO

Incomplete pulmonary function and insufficient production of pulmonary surfactant in premature infants may affect alveolar relaxation, inducing neonatal respiratory distress syndrome (NRDS). The present study was a retrospective comparison of lipid metabolism indexes and clinic information between NRDS and non-NRDS infants. Data on general information, pregnancy, clinical symptoms, family history as well as plasma biochemical and lipid metabolic indexes were retrospectively collected and statistically analyzed from 79 patients with NRDS and 44 non-NRDS infants. Infants in the NRDS group showed lower body weight (2,055 vs. 3,225 g) and gestation age (33.39 vs. 38.53 weeks) than those in the non-NRDS group (P<0.05). Baseline information was corrected by the inverse probability of treatment weighting (IPTW) analysis. The weighted adjusted median age was the same in both groups and there was no significant difference between two groups in birth weight. The IPTW analysis revealed that the levels of plasma triglyceride (TG), total cholesterol, low-density lipoprotein, free triiodothyronine, free thyroxine, glucose, calcium (Ca2+) and phosphorus in the NRDS infants were significantly lower compared with those in the non-NRDS infants. Additionally, NRDS infants had significantly higher incidence rates of pneumonia, sepsis, brain injury infection, preterm birth, patent foramen ovale, patent ductus arteriosus and premature rupture of membranes compared with the non-NRDS infants (P<0.05). Multivariate logistic analysis showed that TG and Ca2+ were risk factors associated with NRDS (P<0.05). Infants with NRDS have significantly lower levels of plasma lipid indexes. The results of the present study provide data to guide the clinical management of NRDS.

15.
Adv Sci (Weinh) ; 11(10): e2308153, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38112232

RESUMO

The development of green, controllable, and simplified pathways for rapid dopamine polymerization holds significant importance in the field of polydopamine (PDA) surface chemistry. In this study, a green strategy is successfully devised to accelerate and control the polymerization of dopamine through the introduction of ozone (O3 ). The findings reveal that ozone serves as an eco-friendly trigger, significantly accelerating the dopamine polymerization process across a broad pH range, spanning from 4.0 to 10.0. Notably, the deposition rate of PDA coatings on a silicon wafer reaches an impressive value of ≈64.8 nm h-1 (pH 8.5), which is 30 times higher than that of traditional air-assisted PDA and comparable to the fastest reported method. Furthermore, ozone exhibits the ability to accelerate dopamine polymerization even under low temperatures. It also enables control over the inhibition-initiation of the polymerization process by regulating the "ON/OFF" mode of the ozone gas. Moreover, the ozone-induced PDA coatings demonstrate exceptional characteristics, including high homogeneity, good hydrophilicity, and remarkable chemical and mechanical stability. Additionally, the ozone-induced PDA coatings can be rapidly and effectively deposited onto a wide range of substrates, particularly those that are adhesion-resistant, such as polytetrafluoroethylene (PTFE).

16.
PLoS One ; 19(1): e0289454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241316

RESUMO

BACKGROUND: The mental health of healthcare workers during the coronavirus-2019 pandemic was seriously affected, and the risk of mental health problems was high. The present study sought to systematically evaluate the mental health problems of healthcare workers worldwide during the pandemic and to determine the latest global frequency of COVID-19 associated mental health problems. METHODS: Data in the Cumulative Index to Nursing and Allied Health Literature (CINAHL), EMBASE, Elsevier, MEDLINE, PubMed, PsycINFO and the Web of Science before November 11, 2022, were systematically searched. Cohort, case-control and cross-sectional studies were included. The meta-analysis used a random effects model to synthesize the comprehensive prevalence rate of mental health problems. Subgroup analyses were performed based on time of data collection; whether the country was or was not developed; continent; doctors and nurses; doctors/nurses vs. other healthcare workers; and psychological evaluation scale. RESULTS: A total of 161 studies were included, including 341,014 healthcare workers worldwide, with women accounting for 82.8%. Occupationally, 16.2% of the healthcare workers were doctors, 63.6% were nurses and 13.3% were other medical staff. During the pandemic, 47% (95% confidence interval [CI], 35-60%) of healthcare workers reported job burnout, 38% (95% CI, 35-41%) experienced anxiety, 34% (95% CI 30-38%) reported depression, 30% (95% CI, 29-31%) had acute stress disorder, and 26% (95% CI, 21-31%) had post-traumatic stress disorder. CONCLUSIONS: The study found that there were common mental health problems among health care workers during the COVID-19 pandemic. The most common was job burnout, followed by anxiety, depression, acute stress and post-traumatic stress disorder. Although the global pandemic has been brought under control, its long-term impact on the mental health of healthcare workers cannot be ignored. Additional research is required to develop measures to prevent, monitor and treat psychological disorders among healthcare workers.


Assuntos
Esgotamento Profissional , COVID-19 , Feminino , Humanos , Ansiedade/epidemiologia , Ansiedade/terapia , Esgotamento Profissional/epidemiologia , COVID-19/epidemiologia , Estudos Transversais , Depressão/epidemiologia , Depressão/terapia , Pessoal de Saúde/psicologia , Nível de Saúde , Pandemias , Prevalência , Masculino
17.
Blood ; 117(22): 6024-35, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21355092

RESUMO

The failure of blood vessels to revascularize ischemic neural tissue represents a significant challenge for vascular biology. Examples include proliferative retinopathies (PRs) such as retinopathy of prematurity and proliferative diabetic retinopathy, which are the leading causes of blindness in children and working-age adults. PRs are characterized by initial microvascular degeneration, followed by a compensatory albeit pathologic hypervascularization mounted by the hypoxic retina attempting to reinstate metabolic equilibrium. Paradoxically, this secondary revascularization fails to grow into the most ischemic regions of the retina. Instead, the new vessels are misdirected toward the vitreous, suggesting that vasorepulsive forces operate in the avascular hypoxic retina. In the present study, we demonstrate that the neuronal guidance cue semaphorin 3A (Sema3A) is secreted by hypoxic neurons in the avascular retina in response to the proinflammatory cytokine IL-1ß. Sema3A contributes to vascular decay and later forms a chemical barrier that repels neo-vessels toward the vitreous. Conversely, silencing Sema3A expression enhances normal vascular regeneration within the ischemic retina, thereby diminishing aberrant neovascularization and preserving neuroretinal function. Overcoming the chemical barrier (Sema3A) released by ischemic neurons accelerates the vascular regeneration of neural tissues, which restores metabolic supply and improves retinal function. Our findings may be applicable to other neurovascular ischemic conditions such as stroke.


Assuntos
Isquemia/patologia , Neovascularização Patológica , Neurônios/patologia , Oxigênio/toxicidade , Regeneração , Doenças Retinianas/patologia , Semaforina-3A/fisiologia , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Western Blotting , Adesão Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Técnicas Imunoenzimáticas , Interleucina-1beta/farmacologia , Isquemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , RNA Mensageiro/genética , Ratos , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Neovascularização Retiniana , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Asian Biomed (Res Rev News) ; 17(2): 45-54, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37719320

RESUMO

Background: Inflammatory bowel disease (IBD) is a condition with an unclear genetic basis. Fucosyltransferase 3 (FUT3) could potentially be linked to IBD susceptibility. Objective: To investigate the association between FUT3 gene polymorphisms and IBD. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 checklist and Population, Intervention, Comparison, Outcomes, and Study (PICOS) guidelines, case-control studies published until April 30, 2020 was searched. Two independent reviewers conducted screening, data extraction, and quality assessment using the Newcastle-Ottawa Scale. Meta-analysis, sensitivity analysis, and Egger tests were performed using RevMan and Stata12.0. Results: The review included 5 articles and 12 case-control studies involving 1712 IBD patients and 1903 controls. The meta-analysis revealed the following combined odds ratios [95% confidence intervals]: rs3745635 genotype (GA+AA vs GG) 0.84 (0.72-0.97), (GG+GA vs AA) 1.93 (1.23-3.05), (GG vs AA) 2.38 (1.52-3.74), (A vs G) 0.84 (0.73-0.96); rs3894326 genotype (TA+AA vs TT) 1.03 (0.87-1.23), (TT+TA vs AA) 1.19 (0.56-2.51), (TT vs AA) 1.19 (0.56-2.51), (A vs T) 1.02 (0.86-1.20); rs28362459 genotype (TG+GG vs TT) 0.98 (0.85-1.12), (TT+TG vs GG) 1.20 (0.90-1.61), (TT vs GG) 1.21 (0.90-1.62), (G vs T) 0.96 (0.86-1.07). Sensitivity analysis indicated the stability of the results, and Egger analysis showed no significant publication bias. Conclusions: The rs3745635 gene polymorphism may be associated with IBD susceptibility, whereas the rs3894326 and rs28362459 gene polymorphisms may not be associated with IBD.

19.
Polymers (Basel) ; 15(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850123

RESUMO

Hydrogel coatings that can endow various substrates with superior properties (e.g., biocompatibility, hydrophilicity, and lubricity) have wide applications in the fields of oil/water separation, antifouling, anti-bioadhesion, etc. Currently, the engineering of multifunctional hydrogel-coated materials with superwettability and water purification property using a simple and sustainable strategy is still largely uninvestigated but has a beneficial effect on the world. Herein, we successfully prepared poly(2-acrylamido-2-methyl-1-propanesulfonic acid) hydrogel/ß-FeOOH-coated poly(vinylidene fluoride) (PVDF/PAMPS/ß-FeOOH) membrane through free-radical polymerization and the in situ mineralization process. In this work, owing to the combination of hydrophilic PAMPS hydrogel coating and ß-FeOOH nanorods anchored onto PVDF membrane, the resultant PVDF/PAMPS/ß-FeOOH membrane achieved outstanding superhydrophilicity/underwater superoleophobicity. Moreover, the membrane not only effectively separated surfactant-stabilized oil/water emulsions, but also possessed a long-term use capacity. In addition, excellent photocatalytic activity against organic pollutants was demonstrated so that the PVDF/PAMPS/ß-FeOOH membrane could be utilized to deal with wastewater. It is envisioned that these hydrogel/ß-FeOOH-coated PVDF membranes have versatile applications in the fields of oil/water separation and wastewater purification.

20.
Nat Med ; 11(12): 1339-45, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16311602

RESUMO

Nitrative stress has an important role in microvascular degeneration leading to ischemia in conditions such as diabetic retinopathy and retinopathy of prematurity. Thus far, mediators of nitrative stress have been poorly characterized. We recently described that trans-arachidonic acids are major products of NO(2)(*)-mediated isomerization of arachidonic acid within the cell membrane, but their biological relevance is unknown. Here we show that trans-arachidonic acids are generated in a model of retinal microangiopathy in vivo in a NO(*)-dependent manner. They induce a selective time- and concentration-dependent apoptosis of microvascular endothelial cells in vitro, and result in retinal microvascular degeneration ex vivo and in vivo. These effects are mediated by an upregulation of the antiangiogenic factor thrombospondin-1, independently of classical arachidonic acid metabolism. Our findings provide new insight into the molecular mechanisms of nitrative stress in microvascular injury and suggest new therapeutic avenues in the management of disorders involving nitrative stress, such as ischemic retinopathies and encephalopathies.


Assuntos
Apoptose/fisiologia , Ácidos Araquidônicos/toxicidade , Angiopatias Diabéticas/metabolismo , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Vasos Retinianos/citologia , Trombospondina 1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Ácidos Araquidônicos/metabolismo , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Primers do DNA , Marcação In Situ das Extremidades Cortadas , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley , Vasos Retinianos/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sus scrofa , Sais de Tetrazólio , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA