Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(38): 23499-23509, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32907946

RESUMO

Understanding the molecular basis of male sterility and developing practical male-sterility systems are essential for heterosis utilization and commercial hybrid seed production in crops. Here, we report molecular regulation by genic male-sterility gene maize male sterility 7 (ZmMs7) and its application for developing a dominant male-sterility system in multiple species. ZmMs7 is specifically expressed in maize anthers, encodes a plant homeodomain (PHD) finger protein that functions as a transcriptional activator, and plays a key role in tapetal development and pollen exine formation. ZmMs7 can interact with maize nuclear factor Y (NF-Y) subunits to form ZmMs7-NF-YA6-YB2-YC9/12/15 protein complexes that activate target genes by directly binding to CCAAT box in their promoter regions. Premature expression of ZmMs7 in maize by an anther-specific promoter p5126 results in dominant and complete male sterility but normal vegetative growth and female fertility. Early expression of ZmMs7 downstream genes induced by prematurely expressed ZmMs7 leads to abnormal tapetal development and pollen exine formation in p5126-ZmMs7 maize lines. The p5126-ZmMs7 transgenic rice and Arabidopsis plants display similar dominant male sterility. Meanwhile, the mCherry gene coupled with p5126-ZmMs7 facilitates the sorting of dominant sterility seeds based on fluorescent selection. In addition, both the ms7-6007 recessive male-sterility line and p5126-ZmMs7M dominant male-sterility line are highly stable under different genetic germplasms and thus applicable for hybrid maize breeding. Together, our work provides insight into the mechanisms of anther and pollen development and a promising technology for hybrid seed production in crops.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Zea mays/genética , Arabidopsis/genética , Produtos Agrícolas , Oryza/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Pólen/genética , Zea mays/crescimento & desenvolvimento
2.
PLoS Genet ; 15(1): e1007423, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615614

RESUMO

Many animals exploit several niches sequentially during their life cycles, a fitness referred to as ontogenetic niche shift (ONS). To successfully accomplish ONS, transition between development stages is often coupled with changes in one or more primitive, instinctive behaviors. Yet, the underlining molecular mechanisms remain elusive. We show here that Leptinotarsa decemlineata larvae finish their ONS at the wandering stage by leaving the plant and pupating in soil. At middle wandering phase, larvae also switch their phototactic behavior, from photophilic at foraging period to photophobic. We find that enhancement of juvenile hormone (JH) signal delays the phototactic switch, and vise verse. Moreover, RNA interference (RNAi)-aided knockdown of LdPTTH (prothoracicotropic hormone gene) or LdTorso (PTTH receptor gene) impairs avoidance response to light, a phenotype nonrescuable by 20-hydroxyecdysone. Consequently, the RNAi beetles pupate at the soil surface or in shallow layer of soil, with most of them failing to construct pupation chambers. Furthermore, a combination of depletion of LdPTTH/LdTorso and disturbance of JH signal causes no additive effects on light avoidance response and pupation site selection. Finally, we establish that TrpA1 (transient receptor potential (TRP) cation channel) is necessary for light avoidance behavior, acting downstream of PTTH. We conclude that JH/PTTH cascade concomitantly regulates metamorphosis and the phototaxis switch, to drive ONS of the wandering beetles from plant into soil to start the immobile pupal stage.


Assuntos
Hormônios de Inseto/genética , Hormônios Juvenis/genética , Metamorfose Biológica/genética , Fototaxia , Animais , Besouros/genética , Besouros/crescimento & desenvolvimento , Ecdisterona/metabolismo , Aptidão Genética/genética , Proteínas de Insetos/genética , Larva/genética , Larva/crescimento & desenvolvimento , Pupa/genética , Pupa/crescimento & desenvolvimento , Interferência de RNA , Transdução de Sinais
3.
Plant Biotechnol J ; 19(9): 1769-1784, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33772993

RESUMO

Identifying genic male-sterility (GMS) genes and elucidating their roles are important to unveil plant male reproduction and promote their application in crop breeding. However, compared with Arabidopsis and rice, relatively fewer maize GMS genes have been discovered and little is known about their regulatory pathways underlying anther and pollen development. Here, by sequencing and analysing anther transcriptomes at 11 developmental stages in maize B73, Zheng58 and M6007 inbred lines, 1100 transcription factor (TF) genes were identified to be stably differentially expressed among different developmental stages. Among them, 14 maize TF genes (9 types belonging to five TF families) were selected and performed CRISPR/Cas9-mediated gene mutagenesis, and then, 12 genes in eight types, including ZmbHLH51, ZmbHLH122, ZmTGA9-1/-2/-3, ZmTGA10, ZmMYB84, ZmMYB33-1/-2, ZmPHD11 and ZmLBD10/27, were identified as maize new GMS genes by using DNA sequencing, phenotypic and cytological analyses. Notably, ZmTGA9-1/-2/-3 triple-gene mutants and ZmMYB33-1/-2 double-gene mutants displayed complete male sterility, but their double- or single-gene mutants showed male fertility. Similarly, ZmLBD10/27 double-gene mutant displayed partial male sterility with 32.18% of aborted pollen grains. In addition, ZmbHLH51 was transcriptionally activated by ZmbHLH122 and their proteins were physically interacted. Molecular markers co-segregating with these GMS mutations were developed to facilitate their application in maize breeding. Finally, all 14-type maize GMS TF genes identified here and reported previously were compared on functional conservation and diversification among maize, rice and Arabidopsis. These findings enrich GMS gene and mutant resources for deeply understanding the regulatory network underlying male fertility and for creating male-sterility lines in maize.


Assuntos
Infertilidade das Plantas , Fatores de Transcrição , Zea mays , Sistemas CRISPR-Cas , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Infertilidade das Plantas/genética , Fatores de Transcrição/genética , Zea mays/genética
4.
J Exp Bot ; 72(12): 4298-4318, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33822021

RESUMO

Fatty acyl reductases (FARs) catalyse the reduction of fatty acyl-coenzyme A (CoA) or -acyl carrier protein (ACP) substrates to primary fatty alcohols, which play essential roles in lipid metabolism in plants. However, the mechanism by which FARs are involved in male reproduction is poorly defined. Here, we found that two maize allelic mutants, ms25-6065 and ms25-6057, displayed defective anther cuticles, abnormal Ubisch body formation, impaired pollen exine formation and complete male sterility. Based on map-based cloning and CRISPR/Cas9 mutagenesis, Zm00001d048337 was identified as ZmMs25, encoding a plastid-localized FAR with catalytic activities to multiple acyl-CoA substrates in vitro. Four conserved residues (G101, G104, Y327 and K331) of ZmMs25 were critical for its activity. ZmMs25 was predominantly expressed in anther, and was directly regulated by transcription factor ZmMYB84. Lipidomics analysis revealed that ms25 mutation had significant effects on reducing cutin monomers and internal lipids, and altering the composition of cuticular wax in anthers. Moreover, loss of function of ZmMs25 significantly affected the expression of its four paralogous genes and five cloned lipid metabolic male-sterility genes in maize. These data suggest that ZmMs25 is required for anther development and male fertility, indicating its application potential in maize and other crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Zea mays , Oxirredutases , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Pólen/genética , Pólen/metabolismo , Zea mays/genética , Zea mays/metabolismo
5.
Int J Mol Sci ; 22(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34360681

RESUMO

The function and regulation of lipid metabolic genes are essential for plant male reproduction. However, expression regulation of lipid metabolic genic male sterility (GMS) genes by noncoding RNAs is largely unclear. Here, we systematically predicted the microRNA regulators of 34 maize white brown complex members in ATP-binding cassette transporter G subfamily (WBC/ABCG) genes using transcriptome analysis. Results indicate that the ZmABCG26 transcript was predicted to be targeted by zma-miR164h-5p, and their expression levels were negatively correlated in maize B73 and Oh43 genetic backgrounds based on both transcriptome data and qRT-PCR experiments. CRISPR/Cas9-induced gene mutagenesis was performed on ZmABCG26 and another lipid metabolic gene, ZmFAR1. DNA sequencing, phenotypic, and cytological observations demonstrated that both ZmABCG26 and ZmFAR1 are GMS genes in maize. Notably, ZmABCG26 proteins are localized in the endoplasmic reticulum (ER), chloroplast/plastid, and plasma membrane. Furthermore, ZmFAR1 shows catalytic activities to three CoA substrates in vitro with the activity order of C12:0-CoA > C16:0-CoA > C18:0-CoA, and its four key amino acid sites were critical to its catalytic activities. Lipidomics analysis revealed decreased cutin amounts and increased wax contents in anthers of both zmabcg26 and zmfar1 GMS mutants. A more detailed analysis exhibited differential changes in 54 monomer contents between wild type and mutants, as well as between zmabcg26 and zmfar1. These findings will promote a deeper understanding of miRNA-regulated lipid metabolic genes and the functional diversity of lipid metabolic genes, contributing to lipid biosynthesis in maize anthers. Additionally, cosegregating molecular markers for ZmABCG26 and ZmFAR1 were developed to facilitate the breeding of male sterile lines.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Aldeído Oxirredutases/genética , Flores/metabolismo , Metabolismo dos Lipídeos , MicroRNAs/metabolismo , Zea mays/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aldeído Oxirredutases/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , RNA-Seq , Zea mays/genética , Zea mays/crescimento & desenvolvimento
6.
Theor Appl Genet ; 132(7): 2137-2154, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31016347

RESUMO

KEY MESSAGE: Genome-wide analysis of maize GPAT gene family, cytological characterization of ZmMs33/ZmGPAT6 gene encoding an ER-localized protein with four conserved motifs, and its molecular breeding application in maize. Glycerol-3-phosphate acyltransferase (GPAT) mediates the initial step of glycerolipid biosynthesis and plays pivotal roles in plant growth and development. Compared with GPAT genes in Arabidopsis, our understanding to maize GPAT gene family is very limited. Recently, ZmMs33 gene has been identified to encode a sn-2 GPAT protein and control maize male fertility in our laboratory (Xie et al. in Theor Appl Genet 131:1363-1378, 2018). However, the functional mechanism of ZmMs33 remains elusive. Here, we reported the genome-wide analysis of maize GPAT gene family and found that 20 maize GPAT genes (ZmGPAT1-20) could be classified into three distinct clades similar to those of ten GPAT genes in Arabidopsis. Expression analyses of these ZmGPAT genes in six tissues and in anther during six developmental stages suggested that some of ZmGPATs may play crucial roles in maize growth and anther development. Among them, ZmGPAT6 corresponds to the ZmMs33 gene. Systemic cytological observations indicated that loss function of ZmMs33/ZmGPAT6 led to defective anther cuticle, arrested degeneration of anther wall layers, abnormal formation of Ubisch bodies and exine and ultimately complete male sterility in maize. The endoplasmic reticulum-localized ZmMs33/ZmGPAT6 possessed four conserved amino acid motifs essential for acyltransferase activity, while ZmMs33/ZmGPAT6 locus and its surrounding genomic region have greatly diversified during evolution of gramineous species. Finally, a multi-control sterility system was developed to produce ms33 male-sterile lines by using a combination strategy of transgene and marker-assisted selection. This work will provide useful information for further deciphering functional mechanism of ZmGPAT genes and facilitate molecular breeding application of ZmMs33/ZmGPAT6 gene in maize.


Assuntos
Família Multigênica , Melhoramento Vegetal , Infertilidade das Plantas/genética , Zea mays/genética , Sequência de Aminoácidos , Flores/genética , Flores/fisiologia , Genes de Plantas , Estudos de Associação Genética , Microscopia Eletrônica de Varredura , Filogenia , Plantas Geneticamente Modificadas , Pólen/ultraestrutura , Sintenia , Zea mays/fisiologia
7.
Int J Mol Sci ; 20(14)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311189

RESUMO

The "competing endogenous RNA (ceRNA) hypothesis" has recently been proposed for a new type of gene regulatory model in many organisms. Anther development is a crucial biological process in plant reproduction, and its gene regulatory network (GRN) has been gradually revealed during the past two decades. However, it is still unknown whether ceRNAs contribute to anther development and sexual reproduction in plants. We performed RNA and small RNA sequencing of anther tissues sampled at three developmental stages in two maize lines. A total of 28,233 stably transcribed loci, 61 known and 51 potentially novel microRNAs (miRNAs) were identified from the transcriptomes. Predicted ceRNAs and target genes were found to conserve in sequences of recognition sites where their corresponding miRNAs bound. We then reconstructed 79 ceRNA-miRNA-target gene regulatory networks consisting of 51 known miRNAs, 28 potentially novel miRNAs, 619 ceRNA-miRNA pairs, and 869 miRNA-target gene pairs. More than half of the regulation pairs showed significant negative correlations at transcriptional levels. Several well-studied miRNA-target gene pairs associated with plant flower development were located in some networks, including miR156-SPL, miR159-MYB, miR160-ARF, miR164-NAC, miR172-AP2, and miR319-TCP pairs. Six target genes in the networks were found to be orthologs of functionally confirmed genes participating in anther development in plants. Our results provide an insight that the ceRNA-miRNA-target gene regulatory networks likely contribute to anther development in maize. Further functional studies on a number of ceRNAs, miRNAs, and target genes will facilitate our deep understanding on mechanisms of anther development and sexual plants reproduction.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/genética , Zea mays/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Transcriptoma , Zea mays/crescimento & desenvolvimento
8.
Plant Biotechnol J ; 16(2): 459-471, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28678349

RESUMO

Although hundreds of genetic male sterility (GMS) mutants have been identified in maize, few are commercially used due to a lack of effective methods to produce large quantities of pure male-sterile seeds. Here, we develop a multicontrol sterility (MCS) system based on the maize male sterility 7 (ms7) mutant and its wild-type Zea mays Male sterility 7 (ZmMs7) gene via a transgenic strategy, leading to the utilization of GMS in hybrid seed production. ZmMs7 is isolated by a map-based cloning approach and encodes a PHD-finger transcription factor orthologous to rice PTC1 and Arabidopsis MS1. The MCS transgenic maintainer lines are developed based on the ms7-6007 mutant transformed with MCS constructs containing the (i) ZmMs7 gene to restore fertility, (ii) α-amylase gene ZmAA and/or (iii) DNA adenine methylase gene Dam to devitalize transgenic pollen, (iv) red fluorescence protein gene DsRed2 or mCherry to mark transgenic seeds and (v) herbicide-resistant gene Bar for transgenic seed selection. Self-pollination of the MCS transgenic maintainer line produces transgenic red fluorescent seeds and nontransgenic normal colour seeds at a 1:1 ratio. Among them, all the fluorescent seeds are male fertile, but the seeds with a normal colour are male sterile. Cross-pollination of the transgenic plants to male-sterile plants propagates male-sterile seeds with high purity. Moreover, the transgene transmission rate through pollen of transgenic plants harbouring two pollen-disrupted genes is lower than that containing one pollen-disrupted gene. The MCS system has great potential to enhance the efficiency of maize male-sterile line propagation and commercial hybrid seed production.


Assuntos
Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Sementes/metabolismo , Sementes/fisiologia , Zea mays/metabolismo , Zea mays/fisiologia , Hibridização Genética/genética , Hibridização Genética/fisiologia , Infertilidade das Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Sementes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética
9.
Opt Lett ; 43(13): 3045-3048, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29957777

RESUMO

In this Letter, we propose a simple and nondestructive method for the determination of the core size of a hollow-core photonic bandgap fiber (HC-PBF) and its axial uniformity based on a Fabry-Perot cavity induced by a pair of opposite silica-air interfaces within the hollow core. The experimental results indicate that the core size test of the HC-PBF has a nanometer-level precision, and its axial uniformity test has an ultimate spatial resolution of tens of microns. The method provides an effective and precise tool for the investigation of the hollow-core size and its longitudinal evolution.

10.
Theor Appl Genet ; 131(6): 1363-1378, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29546443

RESUMO

KEY MESSAGE: Map-based cloning of maize ms33 gene showed that ZmMs33 encodes a sn-2 glycerol-3-phosphate acyltransferase, the ortholog of rice OsGPAT3, and it is essential for male fertility in maize. Genetic male sterility has been widely studied for its biological significance and commercial value in hybrid seed production. Although many male-sterile mutants have been identified in maize (Zea mays L.), it is likely that most genes that cause male sterility are unknown. Here, we report a recessive genetic male-sterile mutant, male sterility33 (ms33), which displays small, pale yellow anthers, and complete male sterility. Using a map-based cloning approach, maize GRMZM2G070304 was identified as the ms33 gene (ZmMs33). ZmMs33 encodes a novel sn-2 glycerol-3-phosphate acyltransferase (GPAT) in maize. A functional complementation experiment showed that GRMZM2G070304 can rescue the male-sterile phenotype of the ms33-6029 mutant. GRMZM2G070304 was further confirmed to be the ms33 gene via targeted knockouts induced by the clustered regularly interspersed short palindromic repeats (CRISPR)/Cas9 system. ZmMs33 is preferentially expressed in the immature anther from the quartet to early-vacuolate microspore stages and in root tissues at the fifth leaf growth stage. Phylogenetic analysis indicated that ZmMs33 and OsGPAT3 are evolutionarily conserved for anther and pollen development in monocot species. This study reveals that the monocot-specific GPAT3 protein plays an important role in male fertility in maize, and ZmMs33 and mutants in this gene may have value in maize male-sterile line breeding and hybrid seed production.


Assuntos
Genes de Plantas , Glicerol-3-Fosfato O-Aciltransferase/genética , Infertilidade das Plantas/genética , Zea mays/genética , Sequência de Aminoácidos , Sistemas CRISPR-Cas , Mapeamento Cromossômico , Clonagem Molecular , Genes Recessivos , Fenótipo , Filogenia , Raízes de Plantas/genética , Pólen/genética , Zea mays/enzimologia
11.
Adv Funct Mater ; 26(22): 3990-3998, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27478429

RESUMO

In this study, a label-free, low-cost, and fast ferrohydrodynamic cell separation scheme is demonstrated using HeLa cells (an epithelial cell line) and red blood cells. The separation is based on cell size difference, and conducted in a custom-made biocompatible ferrofluid that retains the viability of cells during and after the assay for downstream analysis. The scheme offers moderate-throughput (≈106 cells h-1 for a single channel device) and extremely high recovery rate (>99%) without the use of any label. It is envisioned that this separation scheme will have clinical applications in settings where rapid cell enrichment and removal of contaminating blood will improve efficiency of screening and diagnosis such as cervical cancer screening based on mixed populations in exfoliated samples.

12.
Pestic Biochem Physiol ; 133: 26-34, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27742358

RESUMO

Glutathione S-transferases (GSTs) is a family of multifunctional enzymes that are involved in detoxification of poisonous compounds. In the present paper, the Leptinotarsa decemlineata genome and transcriptome dataset were mined and 30 GST genes were identified. These GSTs belonged to cytosolic (29 genes) and microsomal (1 gene) classes. Among them 3 GSTs (LdGSTe2, LdGSTs4, and LdGSTo3) possessed splice variants. Of the 29 cytosolic LdGSTs, 3, 10, 5, 4, 4, and 1 members were classified as delta, epsilon, omega, sigma, theta, and zeta subclasses respectively, along with 2 unclassified genes. Phylogenetic analysis suggest that epsilon, omega and sigma subclasses appear to undergo species-specific bloom. Moreover, most epsilon, omega and sigma GSTs are tandemly arranged in three chromosome scaffolds. To find GST candidates involving in insecticide detoxification, we tested the mRNA levels of 20 GST transcripts under stress of cyhalothrin, fipronil or endosulfan. Out of them, LdGSTe2a, LdGSTe2b, LdGSTo5 and LdGSTt1 were significantly overexpressed after exposure to each of the three insecticides. Two other genes were respectively upregulated after cyhalothrin (LdGSTe10 and LdGSTu2) or endosulfan (LdGSTd1 and LdGSTu2) treatment. The diversified expression responses to insecticide exposure suggest that the LdGSTs may depend on a functionally complex system to detoxify different classes of insecticides. In addition, our findings provide a base for a better understanding of the evolution of insecticide resistance, and functional research on specific GST genes.


Assuntos
Besouros/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutationa Transferase/genética , Proteínas de Insetos/genética , Inseticidas/toxicidade , Animais , Besouros/efeitos dos fármacos , Besouros/enzimologia , DNA Complementar/genética , Endossulfano/toxicidade , Inativação Metabólica/genética , Nitrilas/toxicidade , Filogenia , Pirazóis/toxicidade , Piretrinas/toxicidade , Estresse Fisiológico , Transcriptoma
13.
Langmuir ; 31(31): 8531-4, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26212067

RESUMO

We report a novel magnetic-field-assisted method for the fabrication and manipulation of nonspherical polymer particles within a ferrofluid-based droplet microfluidic device. Shape control and chain assembly of droplets with tunable lengths have been achieved.


Assuntos
Nanopartículas de Magnetita/química , Técnicas Analíticas Microfluídicas , Polímeros/química , Campos Magnéticos , Tamanho da Partícula , Propriedades de Superfície
14.
Int J Mol Sci ; 16(9): 21989-2007, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26378527

RESUMO

Root lesion disease, caused by Pratylenchus coffeae, seriously impairs the growth and yield of ramie, an important natural fiber crop. The ramie defense mechanism against P. coffeae infection is poorly understood, which hinders efforts to improve resistance via breeding programs. In this study, the transcriptome of the resistant ramie cultivar Qingdaye was characterized using Illumina sequence technology. About 46.3 million clean pair end (PE) reads were generated and assembled into 40,826 unigenes with a mean length of 830 bp. Digital gene expression (DGE) analysis was performed on both the control roots (CK) and P. coffeae-challenged roots (CH), and the differentially expressed genes (DEGs) were identified. Approximately 10.16 and 8.07 million cDNA reads in the CK and CH cDNA libraries were sequenced, respectively. A total of 137 genes exhibited different transcript abundances between the two libraries. Among them, the expressions of 117 and 20 DEGs were up- and down-regulated in P. coffeae-challenged ramie, respectively. The expression patterns of 15 candidate genes determined by qRT-PCR confirmed the results of DGE analysis. Time-course expression profiles of eight defense-related genes in susceptible and resistant ramie cultivars were different after P. coffeae inoculation. The differential expression of protease inhibitors, pathogenesis-related proteins (PRs), and transcription factors in resistant and susceptible ramie during P. coffeae infection indicated that cystatin likely plays an important role in nematode resistance.


Assuntos
Boehmeria/genética , Boehmeria/parasitologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Parasita/genética , Nematoides , Transcriptoma , Animais , Biologia Computacional/métodos , Anotação de Sequência Molecular
15.
China CDC Wkly ; 5(6): 125-130, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37008828

RESUMO

What is already known about this topic?: Neutralization levels induced by inactivated vaccines rapidly wane after primary immunization, and a homologous booster can recall specific immune memory, resulting in a remarkable increase in antibody concentration. The optimal interval between primary and booster doses has yet to be determined. What is added by this report?: Booster doses given at three months or more after the two-dose regimen of the CoronaVac COVID-19 vaccine in elderly individuals aged 60 years and older triggered good immune responses. The geometric mean titers of neutralizing antibody on Day 14 after the booster doses increased by 13.3-26.2 fold of baseline levels, reaching 105.45-193.59 in groups with different intervals (e.g., 3, 4, 5, and 6 months). What are the implications for public health practice?: A 4- to 5-month interval between receiving the primary and booster series of CoronaVac could be an alternative to the 6-month interval in order to promote vaccine-induced immunity in elderly individuals. The findings support the optimization of booster immunization strategies.

16.
Mol Plant ; 16(8): 1321-1338, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37501369

RESUMO

Because of its significance for plant male fertility and, hence, direct impact on crop yield, pollen exine development has inspired decades of scientific inquiry. However, the molecular mechanism underlying exine formation and thickness remains elusive. In this study, we identified that a previously unrecognized repressor, ZmMS1/ZmLBD30, controls proper pollen exine development in maize. Using an ms1 mutant with aberrantly thickened exine, we cloned a male-sterility gene, ZmMs1, which encodes a tapetum-specific lateral organ boundary domain transcription factor, ZmLBD30. We showed that ZmMs1/ZmLBD30 is initially turned on by a transcriptional activation cascade of ZmbHLH51-ZmMYB84-ZmMS7, and then it serves as a repressor to shut down this cascade via feedback repression to ensure timely tapetal degeneration and proper level of exine. This activation-feedback repression loop regulating male fertility is conserved in maize and sorghum, and similar regulatory mechanism may also exist in other flowering plants such as rice and Arabidopsis. Collectively, these findings reveal a novel regulatory mechanism of pollen exine development by which a long-sought master repressor of upstream activators prevents excessive exine formation.


Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/fisiologia , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Mutação
17.
Cells ; 11(15)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954161

RESUMO

In plants, oxidative stress and metabolic reprogramming frequently induce male sterility, however our knowledge of the underlying molecular mechanism is far from complete. Here, a maize genic male-sterility (GMS) mutant (ms33-6038) with a loss-of-function of the ZmMs33 gene encoding glycerol-3-phosphate acyltransferase 6 (GPAT6) displayed severe deficiencies in the development of a four-layer anther wall and microspores and excessive reactive oxygen species (ROS) content in anthers. In ms33-6038 anthers, transcriptome analysis identified thousands of differentially expressed genes that were functionally enriched in stress response and primary metabolism pathways. Further investigation revealed that 64 genes involved in ROS production, scavenging, and signaling were specifically changed in expression levels in ms33-6038 anthers compared to the other five investigated GMS lines. The severe oxidative stress triggered premature tapetal autophagy and metabolic reprogramming mediated mainly by the activated SnRK1-bZIP pathway, as well as the TOR and PP2AC pathways, proven by transcriptome analysis. Furthermore, 20 reported maize GMS genes were altered in expression levels in ms33-6038 anthers. The excessive oxidative stress and the metabolic reprogramming resulted in severe phenotypic deficiencies in ms33-6038 anthers. These findings enrich our understanding of the molecular mechanisms by which ROS and metabolic homeostasis impair anther and pollen development in plants.


Assuntos
Infertilidade , Zea mays , Estresse Oxidativo/genética , Infertilidade das Plantas/genética , Pólen/genética , Espécies Reativas de Oxigênio , Zea mays/genética
18.
Vaccines (Basel) ; 10(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35214712

RESUMO

BACKGROUND: The Sabin-strain-based inactivated poliovirus vaccine (sIPV) plays an important role in poliomyelitis eradication in developing countries. As part of the phase III clinical development program, this study aimed to evaluate the safety, immunogenicity and lot-to-lot consistency of the sIPV in 2-month-old infants. METHOD: We conducted a phase III, randomized, double-blind, positive-controlled trial in which 1300 healthy infants were randomly assigned to four groups in a 1:1:1:1 ratio to receive one of the three lots of the sIPV or the control IPV at 2, 3 and 4 months of age. Serum samples were collected before the first dose and 30 days after the third dose of vaccination to assess the immunogenicity. Solicited local and systemic reactions were recorded within 7 days and unsolicited adverse events within 30 days after each vaccination. RESULTS: Of the 1300 randomized infants, 1190 infants completed the study and were included in the per-protocol population. The seroconversion rates in the three lots of the sIPV were 95.67%, 97.03% and 95.59%, respectively, for type 1; 94.33%, 93.73% and 92.88%, respectively, for type 2; and 98.67%, 99.67% and 99.32%, respectively, for type 3. The ratios of GMTs for poliovirus types 1, 2 and 3 of each pair of lots were all between 0.67 and 1.50, therefore meeting the predefined immunological equivalence criteria. For the seroconversion rate of poliovirus types 1, 2 and 3, the pooled sIPV group was non-inferior to the IPV group. The incidence of solicited and unsolicited adverse reactions (ARs) was similar in the pooled sIPV lots and the IPV group, and most of them were mild to moderate in severity. Non-vaccine-related serious adverse events (SAEs) were reported. CONCLUSIONS: Three consecutive lots of sIPV demonstrated robust and consistent immunogenicity. The safety and tolerability of the sIPV was acceptable and similar to that of the IPV.

19.
Expert Rev Vaccines ; 20(6): 761-767, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33861679

RESUMO

Introduction: Sabin strain inactivated poliovirus vaccine (sIPV) developed by Sinovac Biotech Co., Ltd., has shown good safety and immunogenicity against parental strains among infants in several finished pre-licensure clinical trials.Areas covered: To further study the neutralizing capacity of investigational sIPV immune serum against Sabin, Salk and recently circulating poliovirus strains, neutralization assay against ten individual strains was performed on backup serum collected from 250 infant participants of the finished phase II clinical trial.Expert commentary:: The sIPV can generate good immunogenicity against Sabin, Salk and recently circulating poliovirus strains. Taking into account its lower containment requirements and financial costs compared with the conventional Salk strain inactivated poliovirus vaccine, sIPV is an affordable and practical option for polio eradication.


Assuntos
Poliomielite , Poliovirus , Anticorpos Antivirais , Humanos , Soros Imunes , Lactente , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado , Vacina Antipólio Oral , Vacinação
20.
J Pediatric Infect Dis Soc ; 10(4): 440-447, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33269798

RESUMO

BACKGROUND: The Sinovac enterovirus 71 (EV71) vaccine has been given to children aged 6-35 months with good safety, immunogenicity, and efficacy. Further exploration is needed for the application of Sinovac EV71 vaccine in older children. METHODS: A phase III, double-blind, single-center, randomized, controlled, non-inferiority, and bridging-designed trial enrolled 300 participants aged 6-35 months and 600 participants aged 36-71 months. Non-inferiority and superiority analyses were made to determine the immunogenicity of Sinovac EV71 vaccine in older children (Older-S group), comparing with that of control EV71 vaccine in the same age group (Older-C group), or comparing with that of Sinovac EV71 vaccine in younger children (Younger-S group). RESULTS: The seroconversion rate of anti-EV71 in Older-S group (95.5%) was superior to that of Older-C group (86.0%), and non-inferior to that of Younger-S group (98.5%). For baseline seronegative participants, the geometric mean titer of Older-S group (370.0) was non-inferior to that of Older-C group (296.2) and superior to that of Younger-S group (176.5). Incidence of adverse reactions in Older-S group (47.0%) was similar to that of Older-C group (44.8%), or Younger-S group (49.8%). CONCLUSIONS: This study showed good safety and immunogenicity of Sinovac EV71 vaccine in children aged 36-71 months. CLINICAL TRIALS REGISTRATION: NCT03909074. URL: https://clinicaltrials.gov/ct2/show/NCT03909074?term=NCT03909074&draw=2&rank=1.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Vacinas Virais , Idoso , Anticorpos Antivirais , Criança , Método Duplo-Cego , Infecções por Enterovirus/prevenção & controle , Humanos , Imunogenicidade da Vacina , Vacinas de Produtos Inativados/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA