Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 21(1): 54, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31948394

RESUMO

BACKGROUND: Carotenoids contribute significantly to animal body coloration, including the spectacular color pattern diversity among fishes. Fish, as other animals, derive carotenoids from their diet. Following uptake, transport and metabolic conversion, carotenoids allocated to body coloration are deposited in the chromatophore cells of the integument. The genes involved in these processes are largely unknown. Using RNA-Sequencing, we tested for differential gene expression between carotenoid-colored and white skin regions of a cichlid fish, Tropheus duboisi "Maswa", to identify genes associated with carotenoid-based integumentary coloration. To control for positional gene expression differences that were independent of the presence/absence of carotenoid coloration, we conducted the same analyses in a closely related population, in which both body regions are white. RESULTS: A larger number of genes (n = 50) showed higher expression in the yellow compared to the white skin tissue than vice versa (n = 9). Of particular interest was the elevated expression level of bco2a in the white skin samples, as the enzyme encoded by this gene catalyzes the cleavage of carotenoids into colorless derivatives. The set of genes with higher expression levels in the yellow region included genes involved in xanthophore formation (e.g., pax7 and sox10), intracellular pigment mobilization (e.g., tubb, vim, kif5b), as well as uptake (e.g., scarb1) and storage (e.g., plin6) of carotenoids, and metabolic conversion of lipids and retinoids (e.g., dgat2, pnpla2, akr1b1, dhrs). Triglyceride concentrations were similar in the yellow and white skin regions. Extracts of integumentary carotenoids contained zeaxanthin, lutein and beta-cryptoxanthin as well as unidentified carotenoid structures. CONCLUSION: Our results suggest a role of carotenoid cleavage by Bco2 in fish integumentary coloration, analogous to previous findings in birds. The elevated expression of genes in carotenoid-rich skin regions with functions in retinol and lipid metabolism supports hypotheses concerning analogies and shared mechanisms between these metabolic pathways. Overlaps in the sets of differentially expressed genes (including dgat2, bscl2, faxdc2 and retsatl) between the present study and previous, comparable studies in other fish species provide useful hints to potential carotenoid color candidate genes.


Assuntos
Carotenoides/metabolismo , Ciclídeos/genética , Animais , Ciclídeos/metabolismo , Cor , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Triglicerídeos/metabolismo
2.
Biol Lett ; 16(11): 20200629, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33236977

RESUMO

Carotenoid pigments play a major role in animal body colouration, generating strong interest in the genes involved in the metabolic processes that lead from their dietary uptake to their storage in the integument. Here, we used RNA sequencing (RNA-Seq) to test for differentially expressed genes in a taxonomically replicated design using three pairs of related cichlid fish taxa from the genera Tropheus and Aulonocara. Within each pair, taxa differed in terms of red and yellow body colouration, and high-performance liquid chromatography (HPLC) analyses of skin extracts revealed different carotenoid profiles and concentrations across the studied taxa. Five genes were differentially expressed in all three yellow-red skin contrasts (dhrsx, nlrc3, tcaf2, urah and ttc39b), but only the tetratricopeptide repeat protein-coding gene ttc39b, whose gene product is linked to mammalian lipid metabolism, was consistently expressed more highly in the red skin samples. The RNA-Seq results were confirmed by quantitative PCR. We propose ttc39b as a compelling candidate gene for variation in animal carotenoid colouration. Since differential expression of ttc39b was correlated with the presence/absence of yellow carotenoids in a previous study, we suggest that ttc39b is more likely associated with the concentration of total carotenoids than with the metabolic formation of red carotenoids.


Assuntos
Ciclídeos , Pigmentação da Pele , Animais , Carotenoides , Ciclídeos/genética , Pigmentação , Pigmentação da Pele/genética , Repetições de Tetratricopeptídeos
3.
Biol Lett ; 14(11)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404866

RESUMO

Selection arising from social competition over non-mating resources, i.e. resources that do not directly and immediately affect mating success, offers a powerful alternative to sexual selection to explain the evolution of conspicuous ornaments, particularly in females. Here, we address the hypothesis that competition associated with the territoriality exhibited by both males and females in the cichlid fish Tropheus selects for the display of a conspicuous colour pattern in both sexes. The investigated pattern consists of a vertical carotenoid-coloured bar on a black body. Bar width affected the probability of winning in size-matched female-female, but not male-male, contests for territory possession. Our results support the idea that the emergence of female territoriality contributed to the evolution of sexual monomorphism from a dimorphic ancestor, in that females acquired the same conspicuous coloration as males to communicate in contest competition.


Assuntos
Ciclídeos/fisiologia , Fenótipo , Pigmentação , Territorialidade , Animais , Cor , Comportamento Competitivo , Feminino , Masculino
4.
J Hered ; 109(5): 489-500, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29444291

RESUMO

African cichlids are well known for their adaptive radiations, but it is now apparent that they also harbor an extraordinary diversity of sex chromosome systems. In this study, we sequenced pools of males and females from species in 3 different genera of cichlids from Lake Tanganyika. We then searched for regions that were differentiated following the patterns expected for sex chromosomes. We report 2 novel sex chromosomes systems, an XY system on LG19 in Tropheus sp. "black" and a ZW system on LG7 in Hemibates stenosoma. We also identify a ZW system on LG5 in Cyprichromis leptosoma that may be convergent with a system previously described in Lake Malawi cichlids. Our data also identify candidate single nucleotide polymorphisms for the blue/yellow tail color polymorphism observed among male C. leptosoma.


Assuntos
Ciclídeos/genética , Cromossomos Sexuais , África , Alelos , Animais , Ciclídeos/classificação , Feminino , Lagos , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
5.
Ecol Lett ; 20(5): 651-662, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28384842

RESUMO

The establishment of hybrid taxa relies on reproductive isolation from the parental forms, typically achieved by ecological differentiation. Here, we present an alternative mechanism, in which shifts in the strength and location of dispersal barriers facilitate diversification by hybridisation. Our case study concerns the highly diverse, stenotopic rock-dwelling cichlids of the African Great Lakes, many of which display geographic colour pattern variation. The littoral habitat of these fish has repeatedly been restructured in the course of ancient lake level fluctuations. Genetic data and an experimental cross support the hybrid origin of a distinct yellow-coloured variant of Tropheus moorii from ancient admixture between two allopatric, red and bluish variants. Deficient assortative mating preferences imply that reproductive isolation continues to be contingent on geographic separation. Linking paleolimnological data with the establishment of the hybrid variant, we sketch a selectively neutral diversification process governed solely by rearrangements of dispersal barriers.


Assuntos
Ciclídeos/genética , DNA Mitocondrial/genética , Proteínas de Peixes/genética , Variação Genética , Hibridização Genética , Fenótipo , Animais , DNA Mitocondrial/metabolismo , Proteínas de Peixes/metabolismo , Filogenia , Pigmentação , Análise de Sequência de DNA/veterinária , Zâmbia
6.
Ecol Evol ; 14(7): e70009, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035042

RESUMO

Animal body coloration is often linked to social dominance and mating success. This is because it can carry information on an animal's body condition and competitive ability by reflecting the genetic quality of individuals or by responding to their current or past living conditions. The present study investigates genetic and environmental effects on a conspicuous color pattern of the cichlid fish Tropheus sp. black "Ikola," in which the size of a carotenoid-based yellow area on the body co-varies with social dominance. To examine environmental plasticity of the color pattern, we tested for effects of early-life stress, induced by reduced feeding of juveniles prior to color pattern formation, as well as effects of a stress treatment administered to fully colored adult fish. None of the stress treatments affected the color pattern as quantified by the width of the yellow bar. However, offspring bar width was correlated to parental values in mid-parent-mid-offspring regression analyses, and animal models estimated significant additive genetic effects on bar width, indicating heritability of the trait. Depending on the random effects structure of the animal models (i.e., whether including or excluding maternal and brood effects), narrow-sense heritability estimates for bar width ranged between 0.2 and 0.8, with the strongest statistical support for the highest estimate. In each of the alternative models, a large proportion of the total variance in bar width was explained by the included random effects, suggesting that bar width is strongly determined by genetic factors or shared maternal and brood environments, with limited scope for environmental influences later in life.

7.
Hydrobiologia ; 850(10-11): 2371-2383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325485

RESUMO

Mating patterns in animal populations can respond to environmental conditions and consequently vary across time. To examine this variation in nature, studies must include temporal replicates from the same population. Here, we report temporal variation in genetic parentage in the socially monogamous cichlid Variabilichromis moorii from Lake Tanganyika, using samples of broods and their brood-tending parents that were collected across five field trips from the same study population. The sampled broods were either spawned during the dry season (three field trips) or during the rainy season (two trips). In all seasons, we detected substantial rates of extra-pair paternity, which were ascribed to cuckoldry by bachelor males. Paternity shares of brood-tending males were consistently higher, and the numbers of sires per brood were consistently lower, in broods that were spawned in the dry seasons compared to broods from the rainy seasons. In contrast, the strength of size-assortative pairing in our V. moorii population did not vary temporally. Seasonal fluctuations in environmental conditions, such as water turbidity, are proposed as a mechanism behind variable cuckolder pressure. Our data demonstrate the utility of long-term monitoring to improve our understanding of animal mating patterns. Supplementary Information: The online version contains supplementary material available at 10.1007/s10750-022-05042-0.

8.
Ecol Evol ; 11(16): 10904-10916, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34429889

RESUMO

Adverse conditions during early life can cause lasting body size deficits with effects on social and sexual competition, while an accelerated growth response can allow animals to catch up in body size but can be physiologically costly as well. How animals balance growth deficits and growth compensation is predicted to depend on the effects of each on lifetime fitness. We investigated the effects of experimental early-life food restriction on growth, body condition, and adult contest competition in a cichlid fish (Tropheus sp.). Their longevity and aseasonal breeding suggest that, with view on lifetime reproductive success, temporarily growth-restricted Tropheus should rather invest extra time in reaching competitive body size than risk the potential costs of accelerated growth. However, size-selective predation pressure by gape size-limited piscivores may have favored the evolution of an accelerated growth response to early-life delays. Experimentally food-restricted fish temporarily reduced their growth rate compared to a control group, but maintained their body condition factor at the control level throughout the 80-week study period. There was no evidence for an accelerated growth response following the treatment, as the food-restricted fish never exceeded the size-specific growth rates that were measured in the control group. Food-restricted fish caught up with the body size of the control group several months after the end of the treatment period and were as likely as control fish to win size-matched contests over territories. Regardless of feeding regime, there were sex-specific differences in growth rates and in the trajectories of condition factors over time. Females grew more slowly than males but maintained their condition factors at a high level throughout the study period, whereas the males' condition factors declined over time. These differences may reflect sex-specific contributions of condition and body size to adult fitness that are associated with female mouthbrooding and male competition for breeding territories.

9.
Hydrobiologia ; 848(16): 3683-3698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720169

RESUMO

The famously diverse body coloration of cichlid fish serves communicative functions in mating and social interactions including competition for resources. Here, we examined the effects of a color pattern trait-the width of a yellow bar on a black body-on territorial competition in males and females of a color variant ("Ikola") of the Lake Tanganyika cichlid Tropheus. First, measuring integumentary carotenoid concentrations in the yellow and black body regions, we established that wider yellow bars require more carotenoids allocated to body coloration. However, we also detected high carotenoid concentrations in the black body regions (> 100 µg/g fresh skin), raising questions about the function of non-displayed integumentary carotenoids. Behavioral experiments showed that fish with wider bars were quicker to explore an unfamiliar area of the tank. In experiments including presentations of fish dummies, the bar width of 'territorial' dummies had no effect on the latency time which test fish took to intrude into the dummies' territories. However, male test fish performed fewer aggressive acts against wide-barred than against narrow-barred dummy competitors. Our results suggest that intimidation by wide bars as well as correlations between bar width and explorative behavior may contribute to mediating success in territorial Tropheus "Ikola".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA