Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 66(1): e0151321, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34723633

RESUMO

Human papillomavirus (HPV) infections are transmitted through sexual or other close contact and are etiologically associated with epithelial warts, papillomas, and intraepithelial lesions that may progress to cancer. Indeed, 4.8% of the global cancer burden is linked to HPV infection. Highly effective vaccines protect against two to nine of the most medically important HPV genotypes, yet vaccine uptake is inadequate and/or cost prohibitive in many settings. With HPV-related cancer incidence expected to rise over the coming decades, there is a need for effective HPV microbicides. Herein, we demonstrate the strong inhibitory activity of the heparin-neutralizing drug protamine sulfate (PS) against HPV infection. Pretreatment of cells with PS greatly reduced infection, regardless of HPV genotype or virus source. Vaginal application of PS prevented infection of the murine genital tract by HPV pseudovirions. Time-of-addition assays where PS was added to cells before infection, during infection, or after viral attachment demonstrated strong inhibitory activities on early infection steps. No effect on virus infection was found for cell lines deficient in heparan sulfate expression, suggesting that PS binds to heparan sulfate on the cell surface. Consistent with this, prophylactic PS exposure prevented viral attachment, including under low-pH conditions akin to the human vaginal tract. Our findings suggest PS acts dually to prevent HPV infection: prophylactic treatment prevents HPV attachment to host cells, and postattachment administration alters viral entry. Clinical trials are warranted to determine whether protamine-based products are effective as topical microbicides against genital HPVs.


Assuntos
Infecções por Papillomavirus , Animais , Linhagem Celular , Feminino , Humanos , Camundongos , Papillomaviridae , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/prevenção & controle , Protaminas/farmacologia , Internalização do Vírus
2.
Infect Genet Evol ; 116: 105536, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048896

RESUMO

Human papillomavirus type 16 (HPV-16) is the most prevalent HPV type worldwide and in Tunisia and the major carcinogenic HPV type found in cervical precancers and cancers. Previous studies have reported that genetic diversity of HPV16-E6 oncoprotein might be associated with cervical intraepithelial neoplasia progression. In this study we aimed to investigate the prevalence of HPV-16 E6 variants in precancerous lesions in Tunisian population to assess potential correlation with disease severity. Positive HPV cervical samples were obtained from the Laboratory of Anatomy Pathology of Pasteur Institute of Tunis. Cytological study was performed to identify cervical precancerous lesions. HPVs were typed using Reverse Line Hybridization. Only samples with HPV-16 single infection were selected for HP16-E6 genetic diversity investigation. HPV-16 E6 gene amplification was performed by PCR using specific primers and sequenced by Sanger Sequencing. The multiple alignment of generated sequences was performed using MEGAX software. Phylogenetic tree was constructed using Maximum Likehood method. The ternary complex of E6, E6AP and p53 core domain was used to perform in silico point mutations and thermodynamic calculations to assess stability and binding affinity. Genetic analysis of Tunisian E6-HPV16 sequences showed the presence of three lineages: European (A), African (C) and Asian American (D). Interestingly, the EUR variants were identified as the dominant lineage of HPV-16 and HPV-16 E6 350 G (L83V) was the most detected mutation in precancerous lesions. Modelling data showed that African variants induced the largest destabilizing effect on E6 structure and decreasing thereby in the affinity toward E6AP. Therefore, women infected with European variants are associated with low and high intraepithelial lesions. The findings give useful information for personalized decision algorithms of intra-epithelial cervical neoplasia in Tunisian women.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Lesões Pré-Cancerosas , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano 16/genética , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Filogenia , Polimorfismo Genético , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/virologia
3.
Front Cell Dev Biol ; 7: 139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475144

RESUMO

Papillomaviruses (PVs) were the first viruses recognized to cause tumors and cancers in mammalian hosts by Shope, nearly a century ago (Shope and Hurst, 1933). Over 40 years ago, zur Hausen (1976) first proposed that human papillomaviruses (HPVs) played a role in cervical cancer; in 2008, he shared the Nobel Prize in Medicine for his abundant contributions demonstrating the etiology of HPVs in genital cancers. Despite effective vaccines and screening, HPV infection and morbidity remain a significant worldwide burden, with HPV infections and HPV-related cancers expected increase through 2040. Although HPVs have long-recognized roles in tumorigenesis and cancers, our understanding of the molecular mechanisms by which these viruses interact with cells and usurp cellular processes to initiate infections and produce progeny virions is limited. This is due to longstanding challenges in both obtaining well-characterized infectious virus stocks and modeling tissue-based infection and the replicative cycles in vitro. In the last 20 years, the development of methods to produce virus-like particles (VLPs) and pseudovirions (PsV) along with more physiologically relevant cell- and tissue-based models has facilitated progress in this area. However, many questions regarding HPV infection remain difficult to address experimentally and are, thus, unanswered. Although an obligatory cellular uptake receptor has yet to be identified for any PV species, Rab-GTPases contribute to HPV uptake and transport of viral genomes toward the nucleus. Here, we provide a general overview of the current HPV infection paradigm, the epithelial differentiation-dependent HPV replicative cycle, and review the specifics of how HPVs usurp Rab-related functions during infectious entry. We also suggest other potential interactions based on how HPVs alter cellular activities to complete their replicative-cycle in differentiating epithelium. Understanding how HPVs interface with Rab functions during their complex replicative cycle may provide insight for the development of therapeutic interventions, as current viral counter-measures are solely prophylactic and therapies for HPV-positive individuals remain archaic and limited.

4.
Virology ; 500: 218-225, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27829177

RESUMO

Human Papillomavirus E6 and E7 play critical roles in cancer development, although not all isolates of the viral oncoproteins are identical. A common E7 variant encodes an amino acid change at N29S. We show that this change increases the levels of phosphorylation by CKII by creating an additional phospho-acceptor site at S29. This confers increased phospho-dependent interaction with a number of cellular targets, including TATA Box Binding Protein (TBP) and pRb. A further consequence is an increased ability to target pRb and p130 for degradation. Biologically, these biochemical differences are reflected in an increased ability of the N29S variant to transform primary rodent cells. This is the first study to demonstrate an important biochemical change in E7 function caused by a naturally occurring variation, and we suggest that the N29S variant merits further assessment to determine whether it has an increased association with the development of HPV-associated malignancies.


Assuntos
Transformação Celular Viral , Papillomavirus Humano 16/fisiologia , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Motivos de Aminoácidos , Sítios de Ligação , Papillomavirus Humano 16/química , Papillomavirus Humano 16/genética , Humanos , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Fosforilação , Ligação Proteica , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA