Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Blood ; 137(6): 775-787, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32881992

RESUMO

Hematopoietic and nervous systems are linked via innervation of bone marrow (BM) niche cells. Hematopoietic stem/progenitor cells (HSPCs) express neurotransmitter receptors, such as the γ-aminobutyric acid (GABA) type B receptor subunit 1 (GABBR1), suggesting that HSPCs could be directly regulated by neurotransmitters like GABA that directly bind to GABBR1. We performed imaging mass spectrometry and found that the endogenous GABA molecule is regionally localized and concentrated near the endosteum of the BM niche. To better understand the role of GABBR1 in regulating HSPCs, we generated a constitutive Gabbr1-knockout mouse model. Analysis revealed that HSPC numbers were significantly reduced in the BM compared with wild-type littermates. Moreover, Gabbr1-null hematopoietic stem cells had diminished capacity to reconstitute irradiated recipients in a competitive transplantation model. Gabbr1-null HSPCs were less proliferative under steady-state conditions and upon stress. Colony-forming unit assays demonstrated that almost all Gabbr1-null HSPCs were in a slow or noncycling state. In vitro differentiation of Gabbr1-null HSPCs in cocultures produced fewer overall cell numbers with significant defects in differentiation and expansion of the B-cell lineage. To determine whether a GABBR1 agonist could stimulate human umbilical cord blood (UCB) HSPCs, we performed brief ex vivo treatment prior to transplant into immunodeficient mice, with significant increases in long-term engraftment of HSPCs compared with GABBR1 antagonist or vehicle treatments. Our results indicate a direct role for GABBR1 in HSPC proliferation, and identify a potential target to improve HSPC engraftment in clinical transplantation.


Assuntos
Células-Tronco Hematopoéticas/citologia , Receptores de GABA-B/fisiologia , Animais , Linfócitos B/patologia , Baclofeno/análogos & derivados , Baclofeno/farmacologia , Medula Óssea/inervação , Medula Óssea/metabolismo , Transplante de Medula Óssea , Divisão Celular , Linhagem da Célula , Feminino , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Células Endoteliais da Veia Umbilical Humana/transplante , Humanos , Linfopenia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Quimera por Radiação , Receptores de GABA-B/deficiência , Receptores de GABA-B/genética , Nicho de Células-Tronco
2.
Microbiology (Reading) ; 164(5): 790-800, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29629858

RESUMO

The activities of critical metabolic and regulatory proteins can be altered by exposure to natural or synthetic redox-cycling compounds. Many bacteria, therefore, possess mechanisms to transport or transform these small molecules. The opportunistic pathogen Pseudomonas aeruginosa PA14 synthesizes phenazines, redox-active antibiotics that are toxic to other organisms but have beneficial effects for their producer. Phenazines activate the redox-sensing transcription factor SoxR and thereby induce the transcription of a small regulon, including the operon mexGHI-opmD, which encodes an efflux pump that transports phenazines, and PA14_35160 (pumA), which encodes a putative monooxygenase. Here, we provide evidence that PumA contributes to phenazine resistance and normal biofilm development, particularly during exposure to or production of strongly oxidizing N-methylated phenazines. We show that phenazine resistance depends on the presence of residues that are conserved in the active sites of other putative and characterized monooxygenases found in the antibiotic producer Streptomyces coelicolor. We also show that during biofilm growth, PumA is required for the conversion of phenazine methosulfate to unique phenazine metabolites. Finally, we compare ∆mexGHI-opmD and ∆pumA strains in assays for colony biofilm morphogenesis and SoxR activation, and find that these deletions have opposing phenotypic effects. Our results suggest that, while MexGHI-OpmD-mediated efflux has the effect of making the cellular phenazine pool more reducing, PumA acts on cellular phenazines to make the pool more oxidizing. We present a model in which these two SoxR targets function simultaneously to control the biological activity of the P. aeruginosa phenazine pool.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/fisiologia , Oxigenases de Função Mista/metabolismo , Fenazinas/metabolismo , Pseudomonas aeruginosa/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Citoplasma/metabolismo , Farmacorresistência Bacteriana/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oxigenases de Função Mista/genética , Óperon/genética , Oxirredução , Fenazinas/farmacologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Regulon/genética , Streptomyces coelicolor/fisiologia , Fatores de Transcrição/metabolismo
3.
Front Cell Dev Biol ; 10: 1042734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420136

RESUMO

High grade serous ovarian cancer (HGSOC), the most lethal histotype of ovarian cancer, frequently arises from fallopian tube epithelial cells (FTE). Once transformed, tumorigenic FTE often migrate specifically to the ovary, completing the crucial primary metastatic step and allowing the formation of the ovarian tumors after which HGSOC was originally named. As only the fimbriated distal ends of the fallopian tube that reside in close proximity to the ovary develop precursor lesions such as serous tubal intraepithelial carcinomas, this suggests that the process of transformation and primary metastasis to the ovary is impacted by the local microenvironment. We hypothesize that chemical cues, including small molecules and proteins, may help stimulate the migration of tumorigenic FTE to the ovary. However, the specific mediators of this process are still poorly understood, despite a recent growth in interest in the tumor microenvironment. Our previous work utilized imaging mass spectrometry (IMS) to identify the release of norepinephrine (NE) from the ovary in co-cultures of tumorigenic FTE cells with an ovarian explant. We predicted that tumorigenic FTE cells secreted a biomolecule, not produced or produced with low expression by non-tumorigenic cells, that stimulated the ovary to release NE. As such, we utilized an IMS mass-guided bioassay, using NE release as our biological marker, and bottom-up proteomics to demonstrate that a secreted protein, SPARC, is a factor produced by tumorigenic FTE responsible for enhancing release of ovarian NE and influencing primary metastasis of HGSOC. This discovery highlights the bidirectional interplay between different types of biomolecules in the fallopian tube and ovarian microenvironment and their combined roles in primary metastasis and disease progression.

4.
mBio ; 12(2)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33688014

RESUMO

The lifelong relationship between the Hawaiian bobtail squid Euprymna scolopes and its microbial symbiont Vibrio fischeri represents a simplified model system for studying microbiome establishment and maintenance. The bacteria colonize a dedicated symbiotic light organ in the squid, from which bacterial luminescence camouflages the host in a process termed counterillumination. The squid host hatches without its symbionts, which must be acquired from the ocean amidst a diversity of nonbeneficial bacteria, such that precise molecular communication is required for initiation of the specific relationship. Therefore it is likely there are specialized metabolites used in the light organ microenvironment to modulate these processes. To identify small molecules that may influence the establishment of this symbiosis, we used imaging mass spectrometry to analyze metabolite production in V. fischeri with altered biofilm production, which correlates directly to colonization capability in its host. "Biofilm-up" and "biofilm-down" mutants were compared to a wild-type strain, and ions that were more abundantly produced by the biofilm-up mutant were detected. Using a combination of structural elucidation and synthetic chemistry, one such signal was determined to be a diketopiperazine, cyclo(d-histidyl-l-proline). This diketopiperazine modulated luminescence in V. fischeri and, using imaging mass spectrometry, was directly detected in the light organ of the colonized host. This work highlights the continued need for untargeted discovery efforts in host-microbe interactions and showcases the benefits of the squid-Vibrio system for identification and characterization of small molecules that modulate microbiome behaviors.IMPORTANCE The complexity of animal microbiomes presents challenges to defining signaling molecules within the microbial consortium and between the microbes and the host. By focusing on the binary symbiosis between Vibrio fischeri and Euprymna scolopes, we have combined genetic analysis with direct imaging to define and study small molecules in the intact symbiosis. We have detected and characterized a diketopiperazine produced by strong biofilm-forming V. fischeri strains that was detectable in the host symbiotic organ, and which influences bacterial luminescence. Biofilm formation and luminescence are critical for initiation and maintenance of the association, respectively, suggesting that the compound may link early and later development stages, providing further evidence that multiple small molecules are important in establishing these beneficial relationships.


Assuntos
Aliivibrio fischeri/metabolismo , Decapodiformes/microbiologia , Interações entre Hospedeiro e Microrganismos , Simbiose , Aliivibrio fischeri/química , Aliivibrio fischeri/genética , Animais , Biofilmes/crescimento & desenvolvimento , Dicetopiperazinas/metabolismo , Luminescência , Espectrometria de Massas , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , Transdução de Sinais
5.
Cancers (Basel) ; 13(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923536

RESUMO

The fallopian tube epithelium is the site of origin for a majority of high grade serous ovarian carcinomas (HGSOC). The chemical communication between the fallopian tube and the ovary in the development of HGSOC from the fallopian tube is of interest since the fimbriated ends in proximity of the ovary harbor serous tubal intraepithelial carcinoma (STICs). Epidemiological data indicates that androgens play a role in ovarian carcinogenesis; however, the oncogenic impact of androgen exposure on the fallopian tube, or tubal neoplastic precursor lesions, has yet to be explored. In this report, imaging mass spectrometry identified that testosterone is produced by the ovary when exposed to tumorigenic fallopian tube derived PTEN deficient cells. Androgen exposure increased cellular viability, proliferation, and invasion of murine cell models of healthy fallopian tube epithelium and PAX2 deficient models of the preneoplastic secretory cell outgrowths (SCOUTs). Proliferation and invasion induced by androgen was reversed by co-treatment with androgen receptor (AR) antagonist, bicalutamide. Furthermore, ablation of phosphorylated ERK reversed proliferation, but not invasion. Investigation of two hyperandrogenic rodent models of polycystic ovarian syndrome revealed that peripheral administration of androgens does not induce fallopian proliferation in vivo. These data suggest that tumorigenic lesions in the fallopian tube may induce an androgenic microenvironment proximal to the ovary, which may in turn promote proliferation of the fallopian tube epithelium and preneoplastic lesions.

6.
J Mass Spectrom ; 55(4): e4458, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31693273

RESUMO

Tissue sections have long been the subject matter for the application of imaging mass spectrometry, but recently the technique has been adapted for many other purposes including bacterial colonies and 3D cell culture. Here, we present a simple preparation method for unsectioned invertebrate tissue without the need for fixing, embedding, or slicing. The protocol was used to successfully prepare a Hawaiian bobtail squid hatchling for analysis, and the resulting data detected ions that correspond to compounds present in the host only during its symbiotic colonization by Vibrio fischeri.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Dissecação/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Envelhecimento , Estruturas Animais/microbiologia , Animais , Decapodiformes/citologia , Invertebrados/citologia , Simbiose
7.
J Vis Exp ; (146)2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-31009015

RESUMO

Imaging mass spectrometry (IMS) has routinely been applied to three types of samples: tissue sections, spheroids, and microbial colonies. These sample types have been analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to visualize the distribution of proteins, lipids, and metabolites across the biological sample of interest. We have developed a novel sample preparation method that combines the strengths of the three previous applications to address an underexplored approach for identifying chemical communication in cancer, by seeding mammalian cell cultures into agarose in coculture with healthy tissues followed by desiccation of the sample. Mammalian tissue and cells are cocultured in close proximity allowing chemical communication via diffusion between the tissue and cells. At specific time points, the agarose-based sample is dried in the same manner as microbial colonies prepared for IMS analysis. Our method was developed to model the communication between high grade serous ovarian cancer derived from the fallopian tube as it interacts with the ovary during metastasis. Optimization of the sample preparation resulted in the identification of norepinephrine as a key chemical component in the ovarian microenvironment. This newly developed method can be applied to other biological systems that require an understanding of chemical communication between adjacent cells or tissues.


Assuntos
Comunicação Celular , Espectrometria de Massas/métodos , Animais , Feminino , Camundongos , Ovário/citologia
8.
ACS Cent Sci ; 5(11): 1824-1833, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31807684

RESUMO

Despite rapid evolution in the area of microbial natural products chemistry, there is currently no open access database containing all microbially produced natural product structures. Lack of availability of these data is preventing the implementation of new technologies in natural products science. Specifically, development of new computational strategies for compound characterization and identification are being hampered by the lack of a comprehensive database of known compounds against which to compare experimental data. The creation of an open access, community-maintained database of microbial natural product structures would enable the development of new technologies in natural products discovery and improve the interoperability of existing natural products data resources. However, these data are spread unevenly throughout the historical scientific literature, including both journal articles and international patents. These documents have no standard format, are often not digitized as machine readable text, and are not publicly available. Further, none of these documents have associated structure files (e.g., MOL, InChI, or SMILES), instead containing images of structures. This makes extraction and formatting of relevant natural products data a formidable challenge. Using a combination of manual curation and automated data mining approaches we have created a database of microbial natural products (The Natural Products Atlas, www.npatlas.org) that includes 24 594 compounds and contains referenced data for structure, compound names, source organisms, isolation references, total syntheses, and instances of structural reassignment. This database is accompanied by an interactive web portal that permits searching by structure, substructure, and physical properties. The Web site also provides mechanisms for visualizing natural products chemical space and dashboards for displaying author and discovery timeline data. These interactive tools offer a powerful knowledge base for natural products discovery with a central interface for structure and property-based searching and presents new viewpoints on structural diversity in natural products. The Natural Products Atlas has been developed under FAIR principles (Findable, Accessible, Interoperable, and Reusable) and is integrated with other emerging natural product databases, including the Minimum Information About a Biosynthetic Gene Cluster (MIBiG) repository, and the Global Natural Products Social Molecular Networking (GNPS) platform. It is designed as a community-supported resource to provide a central repository for known natural product structures from microorganisms and is the first comprehensive, open access resource of this type. It is expected that the Natural Products Atlas will enable the development of new natural products discovery modalities and accelerate the process of structural characterization for complex natural products libraries.

9.
ACS Cent Sci ; 4(10): 1360-1370, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30410974

RESUMO

High grade serous ovarian cancer (HGSOC) is the fifth leading cause of cancer deaths among women. New evidence suggests that HGSOC arises in the fallopian tube and then colonizes the ovary before spreading into the peritoneal space. Therefore, due to the proximity of this metastasis, an experimental design was optimized using imaging mass spectrometry to capture the spatial composition of small molecules uniquely expressed when fallopian-tube-derived tumor cells were grown in the microenvironment of the ovary as a model of primary metastasis. The observed mass-to-charge ratios (m/z's) that were induced specifically in coculture represent small molecules that may contribute to the metastasis of HGSOC selectively to the ovary. Human fallopian tube epithelial HGSOC and tumorigenic murine oviductal epithelial cells, but not normal cell types, repeatedly induced a signal from the ovary at m/z 170. This signal was identified as norepinephrine, which was confirmed to stimulate invasion of ovarian cancer cells lacking wild-type p53. These molecules may reveal pathways that contribute to metastasis and biological targets for therapeutic intervention to block ovarian metastasis of fallopian-tube-derived HGSOC. The developed mass spectrometry method can be adapted to other mammalian-based model systems for investigation of untargeted metabolomics that facilitate metastasis.

10.
Chem ; 2(3): 334-358, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28948238

RESUMO

Bacteria are cosmopolitan organisms that in recent years have demonstrated many roles in maintaining host equilibrium. In this review, we discuss three roles bacteria can occupy in a host: pathogenic, symbiotic, and transient, with a specific focus on how bacterial small molecules contribute to homeostasis or dysbiosis. First, we will dissect how small molecules produced by pathogenic bacteria can be used as a source for communication during colonization and as protection against host immune responses. The ability to achieve a higher level of organization through small molecule communication gives pathogenic bacteria an opportunity for increased virulence and fitness. Conversely, in symbiotic relationships with hosts, small molecules are used in the initial acquisition, colonization, and maintenance of this beneficial population. Chemical signals can come from both the host and symbiont, and it is often observed that these interKingdom symbioses result in coevolution of both species involved. Furthermore, the transition from transient to commensal or opportunistic likely relies on molecular mechanisms. The small molecules utilized and produced by transient bacteria are desirable for both the immune and nutritional benefits they provide to the host. Finally, the advantages and disadvantages of modern analytical techniques that are available to researchers in order to study small molecules in situ is an important aspect of this review. It is our opinion that small molecules produced by bacteria are central to many biological processes and a larger focus on uncovering the function and identity of these small molecules is required to gain a deeper understanding of host-microbe associations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA