Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2005): 20230467, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37583324

RESUMO

Niche theory predicts that ecologically similar species can coexist through multidimensional niche partitioning. However, owing to the challenges of accounting for both abiotic and biotic processes in ecological niche modelling, the underlying mechanisms that facilitate coexistence of competing species are poorly understood. In this study, we evaluated potential mechanisms underlying the coexistence of ecologically similar bird species in a biodiversity-rich transboundary montane forest in east-central Africa by computing niche overlap indices along an environmental elevation gradient, diet, forest strata, activity patterns and within-habitat segregation across horizontal space. We found strong support for abiotic environmental habitat niche partitioning, with 55% of species pairs having separate elevation niches. For the remaining species pairs that exhibited similar elevation niches, we found that within-habitat segregation across horizontal space and to a lesser extent vertical forest strata provided the most likely mechanisms of species coexistence. Coexistence of ecologically similar species within a highly diverse montane forest was determined primarily by abiotic factors (e.g. environmental elevation gradient) that characterize the Grinnellian niche and secondarily by biotic factors (e.g. vertical and horizontal segregation within habitats) that describe the Eltonian niche. Thus, partitioning across multiple levels of spatial organization is a key mechanism of coexistence in diverse communities.


Assuntos
Ecossistema , Florestas , Animais , Aves , Biodiversidade , Dieta
2.
J Anim Ecol ; 92(2): 237-249, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35716080

RESUMO

Natural history collections (NHC) provide a wealth of information that can be used to understand the impacts of global change on biodiversity. As such, there is growing interest in using NHC data to estimate changes in species' distributions and abundance trends over historic time horizons when contemporary survey data are limited or unavailable. However, museum specimens were not collected with the purpose of estimating population trends and thus can exhibit spatiotemporal and collector-specific biases that can impose severe limitations to using NHC data for evaluating population trajectories. Here we review the challenges associated with using museum records to track long-term insect population trends, including spatiotemporal biases in sampling effort and sparse temporal coverage within and across years. We highlight recent methodological advancements that aim to overcome these challenges and discuss emerging research opportunities. Specifically, we examine the potential of integrating museum records and other contemporary data sources (e.g. collected via structured, designed surveys and opportunistic citizen science programs) in a unified analytical framework that accounts for the sampling biases associated with each data source. The emerging field of integrated modelling provides a promising framework for leveraging the wealth of collections data to accurately estimate long-term trends of insect populations and identify cases where that is not possible using existing data sources.


Assuntos
Biodiversidade , Insetos , Animais , Dinâmica Populacional
3.
J Anim Ecol ; 92(12): 2248-2262, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37880838

RESUMO

Data deficiencies among rare or cryptic species preclude assessment of community-level processes using many existing approaches, limiting our understanding of the trends and stressors for large numbers of species. Yet evaluating the dynamics of whole communities, not just common or charismatic species, is critical to understanding and the responses of biodiversity to ongoing environmental pressures. A recent surge in both public science and government-funded data collection efforts has led to a wealth of biodiversity data. However, these data collection programmes use a wide range of sampling protocols (from unstructured, opportunistic observations of wildlife to well-structured, design-based programmes) and record information at a variety of spatiotemporal scales. As a result, available biodiversity data vary substantially in quantity and information content, which must be carefully reconciled for meaningful ecological analysis. Hierarchical modelling, including single-species integrated models and hierarchical community models, has improved our ability to assess and predict biodiversity trends and processes. Here, we highlight the emerging 'integrated community modelling' framework that combines both data integration and community modelling to improve inferences on species- and community-level dynamics. We illustrate the framework with a series of worked examples. Our three case studies demonstrate how integrated community models can be used to extend the geographic scope when evaluating species distributions and community-level richness patterns; discern population and community trends over time; and estimate demographic rates and population growth for communities of sympatric species. We implemented these worked examples using multiple software methods through the R platform via packages with formula-based interfaces and through development of custom code in JAGS, NIMBLE and Stan. Integrated community models provide an exciting approach to model biological and observational processes for multiple species using multiple data types and sources simultaneously, thus accounting for uncertainty and sampling error within a unified framework. By leveraging the combined benefits of both data integration and community modelling, integrated community models can produce valuable information about both common and rare species as well as community-level dynamics, allowing for holistic evaluation of the effects of global change on biodiversity.


Assuntos
Biodiversidade , Fonte de Informação , Animais , Crescimento Demográfico , Incerteza
4.
Glob Chang Biol ; 28(21): 6135-6151, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35983755

RESUMO

Climate change poses a unique threat to migratory species as it has the potential to alter environmental conditions at multiple points along a species' migratory route. The eastern migratory population of monarch butterflies (Danaus plexippus) has declined markedly over the last few decades, in part due to variation in breeding-season climate. Here, we combined a retrospective, annual-cycle model for the eastern monarch population with climate projections within the spring breeding grounds in eastern Texas and across the summer breeding grounds in the midwestern U.S. and southern Ontario, Canada to evaluate how monarchs are likely to respond to climate change over the next century. Our results reveal that projected changes in breeding-season climate are likely to lead to decreases in monarch abundance, with high potential for overwintering population size to fall below the historical minimum three or more times in the next two decades. Climatic changes across the expansive summer breeding grounds will also cause shifts in the distribution of monarchs, with higher projected abundances in areas that become wetter but not appreciably hotter (e.g., northern Ohio) and declines in abundance where summer temperatures are projected to increase well above those observed in the recent past (e.g., northern Minnesota). Although climate uncertainties dominate long-term population forecasts, our analyses suggest that we can improve precision of near-term forecasts by collecting targeted data to better understand relationships between breeding-season climate variables and local monarch abundance. Overall, our results highlight the importance of accounting for the impacts of climate changes throughout the full-annual cycle of migratory species.


Assuntos
Borboletas , Migração Animal , Animais , Ontário , Dinâmica Populacional , Estudos Retrospectivos , Estações do Ano
5.
Ecol Appl ; 32(6): e2621, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35389538

RESUMO

Dedicated long-term monitoring at appropriate spatial and temporal scales is necessary to understand biodiversity losses and develop effective conservation plans. Wildlife monitoring is often achieved by obtaining data at a combination of spatial scales, ranging from local to broad, to understand the status, trends, and drivers of individual species or whole communities and their dynamics. However, limited resources for monitoring necessitates tradeoffs in the scope and scale of data collection. Careful consideration of the spatial and temporal allocation of finite sampling effort is crucial for monitoring programs that span multiple spatial scales. Here we evaluate the ability of five monitoring designs-stratified random, weighted effort, indicator unit, rotating panel, and split panel-to recover parameter values that describe the status (occupancy), trends (change in occupancy), and drivers (spatially varying covariate and an autologistic term) of wildlife communities at two spatial scales. Using an amphibian monitoring program that spans a network of US national parks as a motivating example, we conducted a simulation study for a regional community occupancy sampling program to compare the monitoring designs across varying levels of sampling effort (ranging from 10% to 50%). We found that the stratified random design outperformed the other designs for most parameters of interest at both scales and was thus generally preferable in balancing the estimation of status, trends, and drivers across scales. However, we found that other designs had improved performance in specific situations. For example, the rotating panel design performed best at estimating spatial drivers at a regional level. Thus, our results highlight the nuanced scenarios in which various design strategies may be preferred and offer guidance as to how managers can balance common tradeoffs in large-scale and long-term monitoring programs in terms of the specific knowledge gained. Monitoring designs that improve accuracy in parameter estimates are needed to guide conservation policy and management decisions in the face of broad-scale environmental challenges, but the preferred design is sensitive to the specific objectives of a monitoring program.


Assuntos
Animais Selvagens , Biodiversidade , Animais , Ecossistema
6.
Conserv Biol ; 36(6): e13934, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35561029

RESUMO

Effective conservation requires understanding species' abundance patterns and demographic rates across space and time. Ideally, such knowledge should be available for whole communities because variation in species' dynamics can elucidate factors leading to biodiversity losses. However, collecting data to simultaneously estimate abundance and demographic rates of communities of species is often prohibitively time intensive and expensive. We developed a multispecies dynamic N-occupancy model to estimate unbiased, community-wide relative abundance and demographic rates. In this model, detection-nondetection data (e.g., repeated presence-absence surveys) are used to estimate species- and community-level parameters and the effects of environmental factors. To validate our model, we conducted a simulation study to determine how and when such an approach can be valuable and found that our multispecies model outperformed comparable single-species models in estimating abundance and demographic rates in many cases. Using data from a network of camera traps across tropical equatorial Africa, we then used our model to evaluate the statuses and trends of a forest-dwelling antelope community. We estimated relative abundance, rates of recruitment (i.e., reproduction and immigration), and apparent survival probabilities for each species' local population. The antelope community was fairly stable (although 17% of populations [species-park combinations] declined over the study period). Variation in apparent survival was linked more closely to differences among national parks than to individual species' life histories. The multispecies dynamic N-occupancy model requires only detection-nondetection data to evaluate the population dynamics of multiple sympatric species and can thus be a valuable tool for examining the reasons behind recent biodiversity loss.


La conservación efectiva requiere del entendimiento de los patrones de abundancia de las especies a lo largo del tiempo y el espacio. Sería ideal que dicho conocimiento estuviera disponible para todas las comunidades ya que la variación en la dinámica de las especies puede esclarecer los factores que llevan a la pérdida de la biodiversidad. Sin embargo, la recolección de información para estimar simultáneamente las tasas demográficas y de abundancia de las comunidades de especies con frecuencia es cara y consume tiempo. Desarrollamos un modelo multiespecies dinámico de ocupación-N para estimar la tasa demográfica y de abundancia relativas sin sesgos y en toda la comunidad. En este modelo usamos información de detección-no detección (p. ej.: censos repetidos de presencia-ausencia) para estimar los parámetros a nivel comunitario y de especie y los efectos de los factores ambientales. Para validar nuestro modelo, realizamos un estudio de simulación para determinar cómo y cuándo dicha estrategia puede ser valiosa y descubrimos que nuestro modelo multiespecies superó a los modelos comparables de una sola especie en la estimación de las tasas demográficas y de abundancia en muchos casos. Usamos nuestro modelo con datos de una red de cámaras trampa ubicadas a lo largo de África ecuatorial para evaluar los estados y tendencias de una comunidad forestal de antílopes. Estimamos la abundancia relativa, tasa de reclutamiento (es decir, reproducción e inmigración) y las probabilidades de supervivencia aparente para la población local de cada especie. La comunidad de antílopes fue bastante estable (aunque el 17% de las poblaciones [combinaciones especie-parque] declinaron durante el periodo de estudio). La variación en la supervivencia aparente estuvo vinculada con mayor cercanía a las diferencias entre los parques nacionales que a la historia de vida de cada especie individual. El modelo multiespecies dinámico de ocupación-N requiere solamente información de detección-no detección para evaluar las dinámicas poblacionales de muchas especies simpátricas y por lo tanto puede ser una herramienta valiosa para examinar las razones detrás de la pérdida reciente de la biodiversidad.


Assuntos
Antílopes , Conservação dos Recursos Naturais , Animais , Animais Selvagens , Dinâmica Populacional , Biodiversidade
7.
Proc Natl Acad Sci U S A ; 116(17): 8609-8614, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30886097

RESUMO

Monarch butterflies in eastern North America have declined by 84% on Mexican wintering grounds since the observed peak in 1996. However, coarse-scale population indices from northern US breeding grounds do not show a consistent downward trend. This discrepancy has led to speculation that autumn migration may be a critical limiting period. We address this hypothesis by examining the role of multiscale processes impacting monarchs during autumn, assessed using arrival abundances at all known winter colony sites over a 12-y period (2004-2015). We quantified effects of continental-scale (climate, landscape greenness, and disease) and local-scale (colony habitat quality) drivers of spatiotemporal trends in winter colony sizes. We also included effects of peak summer and migratory population indices. Our results demonstrate that higher summer abundance on northern breeding grounds led to larger winter colonies as did greener autumns, a proxy for increased nectar availability in southern US floral corridors. Colony sizes were also positively correlated with the amount of local dense forest cover and whether they were located within the Monarch Butterfly Biosphere Reserve, but were not influenced by disease rates. Although we demonstrate a demographic link between summer and fine-scale winter population sizes, we also reveal that conditions experienced during, and at the culmination of, autumn migration impact annual dynamics. Monarchs face a growing threat if floral resources and winter habitat availability diminish under climate change. Our study tackles a long-standing gap in the monarch's annual cycle and highlights the importance of evaluating migratory conditions to understand mechanisms governing long-term population trends.


Assuntos
Migração Animal/fisiologia , Borboletas/fisiologia , Densidade Demográfica , Estações do Ano , Animais , Ecossistema , México , Modelos Biológicos , Dinâmica Populacional , Estados Unidos
8.
PLoS Comput Biol ; 16(1): e1007542, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31940344

RESUMO

Environmental factors interact with internal rules of population regulation, sometimes perturbing systems to alternate dynamics though changes in parameter values. Yet, pinpointing when such changes occur in naturally fluctuating populations is difficult. An algorithmic approach that can identify the timing and magnitude of parameter shifts would facilitate understanding of abrupt ecological transitions with potential to inform conservation and management of species. The "Dynamic Shift Detector" is an algorithm to identify changes in parameter values governing temporal fluctuations in populations with nonlinear dynamics. The algorithm examines population time series data for the presence, location, and magnitude of parameter shifts. It uses an iterative approach to fitting subsets of time series data, then ranks the fit of break point combinations using model selection, assigning a relative weight to each break. We examined the performance of the Dynamic Shift Detector with simulations and two case studies. Under low environmental/sampling noise, the break point sets selected by the Dynamic Shift Detector contained the true simulated breaks with 70-100% accuracy. The weighting tool generally assigned breaks intentionally placed in simulated data (i.e., true breaks) with weights averaging >0.8 and those due to sampling error (i.e., erroneous breaks) with weights averaging <0.2. In our case study examining an invasion process, the algorithm identified shifts in population cycling associated with variations in resource availability. The shifts identified for the conservation case study highlight a decline process that generally coincided with changing management practices affecting the availability of hostplant resources. When interpreted in the context of species biology, the Dynamic Shift Detector algorithm can aid management decisions and identify critical time periods related to species' dynamics. In an era of rapid global change, such tools can provide key insights into the conditions under which population parameters, and their corresponding dynamics, can shift.


Assuntos
Algoritmos , Biologia Computacional/métodos , Modelos Biológicos , Dinâmica Populacional , Animais , Borboletas/fisiologia , Besouros/fisiologia , Ecossistema , Teoria da Informação , Modelos Estatísticos
9.
Ecol Appl ; 31(6): e02377, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33988277

RESUMO

Improved monitoring and associated inferential tools to efficiently identify declining bird populations, particularly of rare or sparsely distributed species, is key to informed conservation and management across large spatiotemporal regions. We assess abundance trends for 106 bird species in a network of eight forested national parks located within the northeast United States from 2006 to 2019 using a novel hierarchical model. We develop a multispecies, multiregion, removal-sampling model that shares information across species and parks to enable inference on rare species and sparsely sampled parks and to evaluate the effects of local forest structure. Trends in bird abundance over time varied widely across parks, but species showed similar trends within parks. Three parks (Acadia National Park and Marsh-Billings-Rockefeller and Morristown National Historical Parks [NHP]) decreased in bird abundance across all species, while three parks (Saratoga NHP and Roosevelt-Vanderbilt and Weir-Farm National Historic Sites) increased in abundance. Bird abundance peaked at medium levels of basal area and high levels of percent forest and forest regeneration, with percent forest having the largest effect. Variation in these effects across parks could be a result of differences in forest structural stage and diversity. By sharing information across both communities and parks, our novel hierarchical model enables uncertainty-quantified estimates of abundance across multiple geographical (i.e., network, park) and taxonomic (i.e., community, guild, species) levels over a large spatiotemporal region. We found large variation in abundance trends across parks but not across bird guilds, suggesting that local forest condition might have a broad and consistent effect on the entire bird community within a given park. Research should target the three parks with overall decreasing trends in bird abundance to further identify what specific factors are driving observed declines across the bird community. Understanding how bird communities respond to local forest structure and other stressors (e.g., pest outbreaks, climate change) is crucial for informed and lasting management.


Assuntos
Aves , Florestas , Animais , Biodiversidade , Mudança Climática , Geografia , Parques Recreativos
10.
J Anim Ecol ; 90(3): 558-561, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33660878

RESUMO

In Focus: Jaatinen, K., Westerbom, M., Norkko, A., Mustonen, O., & Koons, D. N. (2021). Detrimental impacts of climate change may be exacerbated by density-dependent population regulation in blue mussels. Journal of Animal Ecology, 90, 562-573, https://doi.org/10.1111/1365-2656.13377. Conservation strategies for threatened species are increasingly dependent on forecasts of population responses to climate change. For such forecasts to be accurate, they must account for multiple sources of uncertainty, including those associated with projections of future climate scenarios and those associated with the models used to describe population dynamics. While many population forecasts incorporate parameter uncertainty in abiotic effects and process variance related to unexplained temporal variation, most forecasts overlook the importance of evaluating uncertainty in the structure of the population model itself. By accounting for structural uncertainties in a model of population growth for blue mussels, Jaatinen et al. (2021) demonstrated that density-dependent processes are likely to exacerbate adverse effects of climate change and reduce population viability of this keystone species. These findings highlight the importance of incorporating structural unknowns in population forecasts and the value of approaches that account for multiple sources of climate and model uncertainties. Forecasts that capture a range of possible population trajectories under climate change will help ensure efficient allocation of limited conservation resources.


Assuntos
Mudança Climática , Animais , Previsões , Dinâmica Populacional , Incerteza
11.
Oecologia ; 196(3): 707-721, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34143262

RESUMO

Understanding of animal responses to dynamic resource landscapes is based largely on research on temperate species with small body sizes and fast life histories. We studied a large, tropical mammal with an extremely slow life history, the Western Bornean orangutan (Pongo pygmaeus wurmbii), across a heterogeneous natural landscape encompassing seven distinct forest types. Our goals were to characterize fluctuations in abundance, test hypotheses regarding the relationship between dispersion dynamics and resource availability, and evaluate how movement patterns are influenced by abiotic conditions. We surveyed abundance in Gunung Palung National Park, West Kalimantan, Indonesia, for 99 consecutive months and simultaneously recorded weather data and assessed fruit availability. We developed a Bayesian hierarchical distance sampling model to estimate population dispersion and assess the roles of fruit availability, rainfall, and temperature in driving movement patterns across this heterogeneous landscape. Orangutan abundance varied dramatically over space and time. Each forest type was important in sustaining more than 40% of the total orangutans on site during at least one month, as animals moved to track asynchronies in fruiting phenology. We conclude that landscape-level movements buffer orangutans against fruit scarcity, peat swamps are crucial fallback habitats, and orangutans' use of high elevation forests is strongly dependent on abiotic conditions. Our results show that orangutans can periodically occupy putative-sink habitats and be virtually absent for extended periods from habitats that are vitally important in sustaining their population, highlighting the need for long-term studies and potential risks in interpreting occurrence or abundance measures as indicators of habitat importance.


Assuntos
Pongo pygmaeus , Pongo , Animais , Teorema de Bayes , Ecossistema , Indonésia
14.
Ecol Appl ; 29(2): e01845, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30694574

RESUMO

Carnivore communities face unprecedented threats from humans. Yet, management regimes have variable effects on carnivores, where species may persist or decline in response to direct or indirect changes to the ecosystem. Using a hierarchical multispecies modeling approach, we examined the effects of alternative management regimes (i.e., active vs. passive enforcement of regulations) on carnivore abundances and group sizes at both species and community levels in the Masai Mara National Reserve, Kenya. Alternative management regimes have created a dichotomy in ecosystem conditions within the Reserve, where active enforcement of regulations maintains low levels of human disturbance in the Mara Triangle and passive enforcement of regulations in the Talek region permits multiple forms of human disturbance. Our results demonstrate that these alternative management regimes have variable effects on 11 observed carnivore species. As predicted, some species, such as African lions and bat-eared foxes, have higher population densities in the Mara Triangle, where regulations are actively enforced. Yet, other species, including black-backed jackals and spotted hyenas, have higher population densities in the Talek region where enforcement is passive. Multiple underlying mechanisms, including behavioral plasticity and competitive release, are likely causing higher black-backed jackals and spotted hyena densities in the disturbed Talek region. Our multispecies modeling framework reveals that carnivores do not react to management regimes uniformly, shaping carnivore communities by differentially producing winning and losing species. Some carnivore species require active enforcement of regulations for effective conservation, while others more readily adapt (and in some instances thrive in response) to lax management enforcement and resulting anthropogenic disturbance. Yet, high levels of human disturbance appear to be negatively affecting the majority of carnivores, with potential consequences that may permeate throughout the rest of the ecosystem. Community approaches to monitoring carnivores should be adopted as single species monitoring may overlook important intra-community variability.


Assuntos
Carnívoros , Ecossistema , Animais , Humanos , Quênia , Densidade Demográfica
15.
Ecol Appl ; 28(6): 1554-1564, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29729054

RESUMO

Habitat loss is the greatest threat to the persistence of forest-dependent amphibians, but it is not the only factor influencing species occurrences. The composition of the surrounding matrix, structure of stream networks, and topography are also important landscape characteristics influencing amphibian distributions. Tropical forests have high diversity and endemism of amphibians, but little is known about the specific responses of many of these species to landscape features. In this paper, we quantify the response of amphibian species and communities to landscape-scale characteristics in streams within the fragmented Brazilian Atlantic Forest. We surveyed amphibian communities during a rainy season in 50 independent stream segments using Standardized Acoustic and Visual Transect Sampling (active) and Automated Acoustic Recorders (passive) methods. We developed a hierarchical multi-species occupancy model to quantify the influence of landscape-scale characteristics (forest cover, agriculture, catchment area, stream density, and slope) on amphibian occurrence probabilities while accounting for imperfect detection of species using the two survey methods. At the community level, we estimated an overall mean positive relationship between amphibian occurrence probabilities and forest cover, and a negative relationship with agriculture. Catchment area and slope were negatively related with amphibian community structure (95% credible interval [CI] did not overlap zero). The species-level relationships with landscape covariates were highly variable but showed similar patterns to those at the community level. Species detection probabilities varied widely and were influenced by the sampling method. For most species, the active method resulted in higher detection probabilities than the passive approach. Our findings suggest that small streams and flat topography lead to higher amphibian occurrence probabilities for many species in Brazil's Atlantic Forest. Our results combined with land use and topographic maps can be used to make predictions of amphibian occurrences and distributions beyond our study area. Such projections can be useful to determine where to conduct future research and prioritize conservation efforts in human-modified landscapes.


Assuntos
Agricultura , Anfíbios , Floresta Úmida , Animais , Biodiversidade , Brasil
16.
Ecol Appl ; 28(8): 1948-1962, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30368999

RESUMO

Emerging infectious pathogens are responsible for some of the most severe host mass mortality events in wild populations. Yet, effective pathogen control strategies are notoriously difficult to identify, in part because quantifying and forecasting pathogen spread and disease dynamics is challenging. Following an outbreak, hosts must cope with the presence of the pathogen, leading to host-pathogen coexistence or extirpation. Despite decades of research, little is known about host-pathogen coexistence post-outbreak when low host abundances and cryptic species make these interactions difficult to study. Using a novel disease-structured N-mixture model, we evaluate empirical support for three host-pathogen coexistence hypotheses (source-sink, eco-evolutionary rescue, and spatial variation in pathogen transmission) in a Neotropical amphibian community decimated by Batrachochytrium dendrobatidis (Bd) in 2004. During 2010-2014, we surveyed amphibians in Parque Nacional G. D. Omar Torríjos Herrera, Coclé Province, El Copé, Panama. We found that the primary driver of host-pathogen coexistence was eco-evolutionary rescue, as evidenced by similar amphibian survival and recruitment rates between infected and uninfected hosts. Average apparent monthly survival rates of uninfected and infected hosts were both close to 96%, and the expected number of uninfected and infected hosts recruited (via immigration/reproduction) was less than one host per disease state per 20-m site. The secondary driver of host-pathogen coexistence was spatial variation in pathogen transmission as we found that transmission was highest in areas of low abundance but there was no support for the source-sink hypothesis. Our results indicate that changes in the host community (i.e., through genetic or species composition) can reduce the impacts of emerging infectious disease post-outbreak. Our disease-structured N-mixture model represents a valuable advancement for conservation managers trying to understand underlying host-pathogen interactions and provides new opportunities to study disease dynamics in remnant host populations decimated by virulent pathogens.


Assuntos
Anfíbios , Evolução Biológica , Quitridiomicetos/fisiologia , Doenças Transmissíveis Emergentes/veterinária , Interações Hospedeiro-Patógeno , Micoses/veterinária , Animais , Micoses/microbiologia , Panamá
17.
Proc Biol Sci ; 284(1851)2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28356448

RESUMO

Human-induced ecological change in the open oceans appears to be accelerating. Fisheries, climate change and elevated nutrient inputs are variously blamed, at least in part, for altering oceanic ecosystems. Yet it is challenging to assess the extent of anthropogenic change in the open oceans, where historical records of ecological conditions are sparse, and the geographical scale is immense. We developed millennial-scale amino acid nitrogen isotope records preserved in ancient animal remains to understand changes in food web structure and nutrient regimes in the oceanic realm of the North Pacific Ocean (NPO). Our millennial-scale isotope records of amino acids in bone collagen in a wide-ranging oceanic seabird, the Hawaiian petrel (Pterodroma sandwichensis), showed that trophic level declined over time. The amino acid records do not support a broad-scale increase in nitrogen fixation in the North Pacific subtropical gyre, rejecting an earlier interpretation based on bulk and amino acid specific δ15N chronologies for Hawaiian deep-sea corals and bulk δ15N chronologies for the Hawaiian petrel. Rather, our work suggests that the food web structure in the NPO has shifted at a broad geographical scale, a phenomenon potentially related to industrial fishing.


Assuntos
Aves , Mudança Climática , Cadeia Alimentar , Animais , Antozoários/química , Colágeno/química , Havaí , Isótopos de Nitrogênio/análise , Oceanos e Mares , Oceano Pacífico
18.
Ecology ; 98(6): 1640-1650, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28369775

RESUMO

There is increasing need for methods that integrate multiple data types into a single analytical framework as the spatial and temporal scale of ecological research expands. Current work on this topic primarily focuses on combining capture-recapture data from marked individuals with other data types into integrated population models. Yet, studies of species distributions and trends often rely on data from unmarked individuals across broad scales where local abundance and environmental variables may vary. We present a modeling framework for integrating detection-nondetection and count data into a single analysis to estimate population dynamics, abundance, and individual detection probabilities during sampling. Our dynamic population model assumes that site-specific abundance can change over time according to survival of individuals and gains through reproduction and immigration. The observation process for each data type is modeled by assuming that every individual present at a site has an equal probability of being detected during sampling processes. We examine our modeling approach through a series of simulations illustrating the relative value of count vs. detection-nondetection data under a variety of parameter values and survey configurations. We also provide an empirical example of the model by combining long-term detection-nondetection data (1995-2014) with newly collected count data (2015-2016) from a growing population of Barred Owl (Strix varia) in the Pacific Northwest to examine the factors influencing population abundance over time. Our model provides a foundation for incorporating unmarked data within a single framework, even in cases where sampling processes yield different detection probabilities. This approach will be useful for survey design and to researchers interested in incorporating historical or citizen science data into analyses focused on understanding how demographic rates drive population abundance.


Assuntos
Modelos Teóricos , Dinâmica Populacional , Animais , Demografia , Noroeste dos Estados Unidos , Estrigiformes
19.
Ecol Appl ; 27(2): 619-631, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27859995

RESUMO

There is considerable uncertainty about the role of human-modified habitats in supporting species in fragmented landscapes. This is because few studies sample outside of native habitats in the "matrix." Those that do, often fail to sample landscapes in a way that accounts for the confounding effects of native habitat pattern and species detection biases that can obscure species responses. We employed multi-species hierarchical occupancy models to determine the use of human-modified habitats by Neotropical birds in landscapes that were similar in forest amount and configuration but surrounded by a matrix of agriculture (predominately pasture), bauxite mining (surface mining for aluminum), or suburban development in central Jamaica. We found that the vast majority of bird species used the matrix: with the highest mean occurrences for open-associated, followed by generalist, and last forest-associated species. Migrant species had higher mean occurrences in all matrix types relative to resident species. Contrary to our expectation, mean occurrence for the entire species community, and for forest-associated and migrant species, were highest in bauxite, intermediate in suburban, and lowest in agriculture. Open-associated species had higher occurrences in both bauxite and agricultural matrices, whereas generalist species had higher occurrences in suburban matrices. Additional behavioral observations indicated that Neotropical birds used matrix areas, particularly scattered trees, to acquire food, and secondarily, as movement conduits. Matrix use patterns reflected the differential availability of potential resources and structural connectivity across the three landscape types, but only for those species adapted to open/edge environments and with generalized habitat requirements. Patterns of matrix use by forest specialists reflected the differential levels of degradation of the native forest; thus, we propose that higher matrix use for forest-dependent species may be induced by diminished within-forest resources. These results underscore that effective management of human-modified matrices requires in-depth understanding of the trade-offs between the benefits available in the matrix and the impacts on the disturbance of native habitats.


Assuntos
Aves/fisiologia , Ecossistema , Florestas , Características de História de Vida , Animais , Comportamento Animal , Fazendas , Jamaica , Mineração , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA