Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 252: 114587, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758508

RESUMO

A large amount of lignocellulosic waste is generated every day in the world, and their accumulation in the agroecosystems, integration in soil compositions, or incineration for energy production has severe environmental pollution effects. Using enzymes as biocatalysts for the biodegradation of lignocellulosic materials, especially in harsh processing conditions, is a practical step towards green energy and environmental biosafety. Hence, the current study focuses on enzyme computationally screened from camel rumen metagenomics data as specialized microbiota that have the capacity to degrade lignocellulosic-rich and recalcitrant materials. The novel hyperthermostable xylanase named PersiXyn10 with the performance at extreme conditions was proper activity within a broad temperature (30-100 â„ƒ) and pH range (4.0-11.0) but showed the maximum xylanolytic activity in severe alkaline and temperature conditions, pH 8.0 and temperature 90 â„ƒ. Also, the enzyme had highly resistant to metals, surfactants, and organic solvents in optimal conditions. The introduced xylanase had unique properties in terms of thermal stability by maintaining over 82% of its activity after 15 days of incubation at 90 â„ƒ. Considering the crucial role of hyperthermostable xylanases in the paper industry, the PersiXyn10 was subjected to biodegradation of paper pulp. The proper performance of hyperthermostable PersiXyn10 on the paper pulp was confirmed by structural analysis (SEM and FTIR) and produced 31.64 g/L of reducing sugar after 144 h hydrolysis. These results proved the applicability of the hyperthermostable xylanase in biobleaching and saccharification of lignocellulosic biomass for declining the environmental hazards.


Assuntos
Endo-1,4-beta-Xilanases , Microbiota , Animais , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Lignina/metabolismo , Temperatura , Hidrólise
2.
Entropy (Basel) ; 24(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35885151

RESUMO

Many security-related scenarios including cryptography depend on the random generation of passwords, permutations, Latin squares, CAPTCHAs and other types of non-numerical entities. Random generation of each entity type is a different problem with different solutions. This study is an attempt at a unified solution for all of the mentioned problems. This paper is the first of its kind to pose, formulate, analyze and solve the problem of random object generation as the general problem of generating random non-numerical entities. We examine solving the problem via connecting it to the well-studied random number generation problem. To this end, we highlight the challenges and propose solutions for each of them. We explain our method using a case study; random Latin square generation.

3.
Entropy (Basel) ; 24(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35205560

RESUMO

After being introduced by Shannon as a measure of disorder and unavailable information, the notion of entropy has found its applications in a broad range of scientific disciplines. In this paper, we present a systematic review on the applications of entropy and related information-theoretical concepts in the design, implementation and evaluation of cryptographic schemes, algorithms, devices and systems. Moreover, we study existing trends, and establish a roadmap for future research in these areas.

4.
Entropy (Basel) ; 23(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34828157

RESUMO

The idea behind network caching is to reduce network traffic during peak hours via transmitting frequently-requested content items to end users during off-peak hours. However, due to limited cache sizes and unpredictable access patterns, this might not totally eliminate the need for data transmission during peak hours. Coded caching was introduced to further reduce the peak hour traffic. The idea of coded caching is based on sending coded content which can be decoded in different ways by different users. This allows the server to service multiple requests by transmitting a single content item. Research works regarding coded caching traditionally adopt a simple network topology consisting of a single server, a single hub, a shared link connecting the server to the hub, and private links which connect the users to the hub. Building on the results of Sengupta et al. (IEEE Trans. Inf. Forensics Secur., 2015), we propose and evaluate a yet more complex system model that takes into consideration both throughput and security via combining the mentioned ideas. It is demonstrated that the achievable rates in the proposed model are within a constant multiplicative and additive gap with the minimum secure rates.

5.
Front Microbiol ; 13: 1056364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687660

RESUMO

Some enzymes can catalyze more than one chemical conversion for which they are physiologically specialized. This secondary function, which is called underground, promiscuous, metabolism, or cross activity, is recognized as a valuable feature and has received much attention for developing new catalytic functions in industrial applications. In this study, a novel bifunctional xylanase/ß-glucosidase metagenomic-derived enzyme, PersiBGLXyn1, with underground ß-glucosidase activity was mined by in-silico screening. Then, the corresponding gene was cloned, expressed and purified. The PersiBGLXyn1 improved the degradation efficiency of organic solvent pretreated coffee residue waste (CRW), and subsequently the production of bioethanol during a separate enzymatic hydrolysis and fermentation (SHF) process. After characterization, the enzyme was immobilized on a nanocellulose (NC) carrier generated from sugar beet pulp (SBP), which remarkably improved the underground activity of the enzyme up to four-fold at 80°C and up to two-fold at pH 4.0 compared to the free one. The immobilized PersiBGLXyn1 demonstrated 12 to 13-fold rise in half-life at 70 and 80°C for its underground activity. The amount of reducing sugar produced from enzymatic saccharification of the CRW was also enhanced from 12.97 g/l to 19.69 g/l by immobilization of the enzyme. Bioethanol production was 29.31 g/l for free enzyme after 72 h fermentation, while the immobilized PersiBGLXyn1 showed 51.47 g/l production titre. Overall, this study presented a cost-effective in-silico metagenomic approach to identify novel bifunctional xylanase/ß-glucosidase enzyme with underground ß-glucosidase activity. It also demonstrated the improved efficacy of the underground activities of the bifunctional enzyme as a promising alternative for fermentable sugars production and subsequent value-added products.

6.
Front Microbiol ; 12: 713125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526977

RESUMO

α-Amylases are among the very critical enzymes used for different industrial purposes. Most α-amylases cannot accomplish the requirement of industrial conditions and easily lose their activity in harsh environments. In this study, a novel α-amylase named PersiAmy1 has been identified through the multistage in silico screening pipeline from the rumen metagenomic data. The long-term storage of PersiAmy1 in low and high temperatures demonstrated 82.13 and 71.01% activities after 36 days of incubation at 4 and 50°C, respectively. The stable α-amylase retained 61.09% of its activity after 180 min of incubation at 90°C and was highly stable in a broad pH range, showing 60.48 and 86.05% activities at pH 4.0 and pH 9.0 after 180 min of incubation, respectively. Also, the enzyme could resist the high-salinity condition and demonstrated 88.81% activity in the presence of 5 M NaCl. PersiAmy1 showed more than 74% activity in the presence of various metal ions. The addition of the detergents, surfactants, and organic solvents did not affect the α-amylase activity considerably. Substrate spectrum analysis showed that PersiAmy1 could act on a wide array of substrates. PersiAmy1 showed high stability in inhibitors and superb activity in downstream conditions, thus useful in detergent and baking industries. Investigating the applicability in detergent formulation, PersiAmy1 showed more than 69% activity after incubation with commercial detergents at different temperatures (30-50°C) and retained more than 56% activity after incubation with commercial detergents for 3 h at 10°C. Furthermore, the results of the wash performance analysis exhibited a good stain removal at 10°C. The power of PersiAmy1 in the bread industry revealed soft, chewable crumbs with improved volume and porosity compared with control. This study highlights the intense power of robust novel PersiAmy1 as a functional bio-additive in many industrial applications.

7.
Front Microbiol ; 11: 567863, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193158

RESUMO

As the availability of high-throughput metagenomic data is increasing, agile and accurate tools are required to analyze and exploit this valuable and plentiful resource. Cellulose-degrading enzymes have various applications, and finding appropriate cellulases for different purposes is becoming increasingly challenging. An in silico screening method for high-throughput data can be of great assistance when combined with the characterization of thermal and pH dependence. By this means, various metagenomic sources with high cellulolytic potentials can be explored. Using a sequence similarity-based annotation and an ensemble of supervised learning algorithms, this study aims to identify and characterize cellulolytic enzymes from a given high-throughput metagenomic data based on optimum temperature and pH. The prediction performance of MCIC (metagenome cellulase identification and characterization) was evaluated through multiple iterations of sixfold cross-validation tests. This tool was also implemented for a comparative analysis of four metagenomic sources to estimate their cellulolytic profile and capabilities. For experimental validation of MCIC's screening and prediction abilities, two identified enzymes from cattle rumen were subjected to cloning, expression, and characterization. To the best of our knowledge, this is the first time that a sequence-similarity based method is used alongside an ensemble machine learning model to identify and characterize cellulase enzymes from extensive metagenomic data. This study highlights the strength of machine learning techniques to predict enzymatic properties solely based on their sequence. MCIC is freely available as a python package and standalone toolkit for Windows and Linux-based operating systems with several functions to facilitate the screening and thermal and pH dependence prediction of cellulases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA