Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(3): 423-430, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35228696

RESUMO

The global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic requires effective therapies against coronavirus disease 2019 (COVID-19), and neutralizing antibodies are a promising therapy. A noncompeting pair of human neutralizing antibodies (B38 and H4) blocking SARS-CoV-2 binding to its receptor, ACE2, have been described previously. Here, we develop bsAb15, a bispecific monoclonal antibody (bsAb) based on B38 and H4. bsAb15 has greater neutralizing efficiency than these parental antibodies, results in less selective pressure and retains neutralizing ability to most SARS-CoV-2 variants of concern (with more potent neutralizing activity against the Delta variant). We also selected for escape mutants of the two parental mAbs, a mAb cocktail and bsAb15, demonstrating that bsAb15 can efficiently neutralize all single-mAb escape mutants. Furthermore, prophylactic and therapeutic application of bsAb15 reduced the viral titer in infected nonhuman primates and human ACE2 transgenic mice. Therefore, this bsAb is a feasible and effective strategy to treat and prevent severe COVID-19.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/genética , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/genética , COVID-19/imunologia , COVID-19/patologia , COVID-19/prevenção & controle , COVID-19/virologia , Clonagem Molecular , Modelos Animais de Doenças , Relação Dose-Resposta Imunológica , Epitopos , Humanos , Macaca mulatta , Camundongos , Testes de Neutralização , Engenharia de Proteínas/métodos , Relação Estrutura-Atividade
2.
Proc Natl Acad Sci U S A ; 120(52): e2314193120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109549

RESUMO

Currently, monoclonal antibodies (MAbs) targeting the SARS-CoV-2 receptor binding domain (RBD) of spike (S) protein are classified into seven classes based on their binding epitopes. However, most of these antibodies are seriously impaired by SARS-CoV-2 Omicron and its subvariants, especially the recent BQ.1.1, XBB and its derivatives. Identification of broadly neutralizing MAbs against currently circulating variants is imperative. In this study, we identified a "breathing" cryptic epitope in the S protein, named as RBD-8. Two human MAbs, BIOLS56 and IMCAS74, were isolated recognizing this epitope with broad neutralization abilities against tested sarbecoviruses, including SARS-CoV, pangolin-origin coronaviruses, and all the SARS-CoV-2 variants tested (Omicron BA.4/BA.5, BQ.1.1, and XBB subvariants). Searching through the literature, some more RBD-8 MAbs were defined. More importantly, BIOLS56 rescues the immune-evaded antibody, RBD-5 MAb IMCAS-L4.65, by making a bispecific MAb, to neutralize BQ.1 and BQ.1.1, thereby producing an MAb to cover all the currently circulating Omicron subvariants. Structural analysis reveals that the neutralization effect of RBD-8 antibodies depends on the extent of epitope exposure, which is affected by the angle of antibody binding and the number of up-RBDs induced by angiotensin-converting enzyme 2 binding. This cryptic epitope which recognizes non- receptor binding motif (non-RBM) provides guidance for the development of universal therapeutic antibodies and vaccines against COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , Anticorpos Monoclonais , Epitopos , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
3.
Mol Cell Probes ; 76: 101968, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960210

RESUMO

The close association between organelle interactions, such as mitochondrial-lysosomal interactions, and various diseases, including tumors, remains a challenge for drug discovering and identification. Conventional evaluation methods are often complex and multistep labeling procedures often generate false positives, such as cell damage. To overcome these limitations, we employed a single dual-color reporting molecule called Coupa, which labels mitochondria and lysosomes as blue and red, respectively. This facilitates the evaluation and discovering of drugs targeting mitochondria-lysosome contact (MLC). Using Coupa, we validated the effectiveness of various known antitumor drugs in intervening MLC by assessing their effect on key aspects, such as status, localization, and quantity. This provides evidence for the accuracy and applicability of our dual-color reporting molecule. Notably, we observed that several structural isomers of drugs, including Urolithin (A/B/C), exhibited distinct effects on MLC. In addition, Verteporfin and TEAD were found to induce anti-tumor effects by controlling MLC at the organelle level, suggesting a potential new mechanism of action. Collectively, Coupa offers a novel scientific tool for discovering drugs that target mitochondrial-lysosomal interactions. It not only distinguished the differential effects of structurally similar drugs on the same target, but also reveals new mechanisms underlying the reported antitumor properties of existing drugs. Ultimately, our findings contribute to the advancement of drug discovery and provide valuable insights into the complex interactions between organelles in a disease context.


Assuntos
Descoberta de Drogas , Lisossomos , Mitocôndrias , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Descoberta de Drogas/métodos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Coloração e Rotulagem/métodos
4.
BMC Womens Health ; 24(1): 492, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237895

RESUMO

BACKGROUND: The increase in the rate of multiple pregnancies in clinical practice is associated with assisted reproductive technology (ART). Given the high risk of dichorionic triamniotic (DCTA) triplet pregnancies, reducing DCTA triplet pregnancies to twin or singleton pregnancies is often beneficial. CASE PRESENTATION: This article reports on two cases of DCTA triplet pregnancies resulting from two blastocyst transfers. Given the high risk of complications such as twin-to-twin transfusion syndrome (TTTS) in monochorionic diamniotic (MCDA) twin pregnancies, patients have a strong desire to preserve the dichorionic diamniotic (DCDA) twins. Multifetal pregnancy reduction (MFPR) was performed in both cases to continue the pregnancy with DCDA twins by reducing one of the MCDA twins. Both of the pregnant women in this report eventually gave birth to healthy twins at 37 weeks. CONCLUSIONS: For infertile couples with multiple pregnancies but with a strong desire to remain the DCDA twins, our report suggests that reducing DCTA triplets to DCDA twin pregnancies may be an option based on clinical operability and assessment of surgical difficulty.


Assuntos
Transferência Embrionária , Redução de Gravidez Multifetal , Gravidez de Trigêmeos , Trigêmeos , Humanos , Gravidez , Feminino , Redução de Gravidez Multifetal/métodos , Adulto , Transferência Embrionária/métodos , Transfusão Feto-Fetal/cirurgia , Resultado da Gravidez , Gravidez de Gêmeos
5.
World J Surg Oncol ; 22(1): 281, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39456011

RESUMO

Thyroid cancer (TC) represents one of the most prevalent endocrine malignancies, with a rising incidence worldwide. Epigenetic alterations, which modify gene expression without altering the underlying DNA sequence, have garnered significant attention in recent years. Increasing evidence underscores the pivotal role of epigenetic modifications, including DNA methylation, RNA methylation, and histone methylation, in the pathogenesis of TC. This review provides a comprehensive overview of these reversible and environmentally influenced epigenetic modifications, highlighting their molecular mechanisms and functional roles in TC. Additionally, the clinical implications, challenges associated with studying these epigenetic modifications, and potential future research directions are explored.


Assuntos
Metilação de DNA , Epigênese Genética , Histonas , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Histonas/metabolismo , Histonas/genética , Regulação Neoplásica da Expressão Gênica , Prognóstico
6.
Ecotoxicol Environ Saf ; 271: 115932, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232522

RESUMO

BACKGROUND: Endometriosis is a common gynecological disease that affects approximately 5 %∼10 % of reproductive-aged women. Zinc (Zn), selenium (Se), copper (Cu), cobalt (Co) and molybdenum (Mo) are essential trace elements and are very important for human health. However, studies on the relationship between mixtures of essential trace elements and the risk of endometriosis are limited and inconsistent. In particular, studies confirming the association via different sample types are limited. OBJECTIVE: This study aimed to investigate the associations between Zn, Se, Cu, Co and Mo concentrations in blood and follicular fluid (FF) and endometriosis risk in a Chinese population. METHODS: A total of 609 subjects undergoing in vitro fertilization (IVF) were recruited; 836 samples were analyzed, including 451 blood samples (234 controls and 217 cases) and 385 FF samples (203 controls and 182 cases). In addition, 227 subjects provided both blood and FF samples. Zn, Se, Cu, Co and Mo concentrations in blood and FF were quantified via inductively coupled plasma-mass spectrometry (ICP-MS). The associations between the levels of Zn, Se, Cu, Co and Mo and the risk of endometriosis were assessed using single-element models (logistic regression models), and the combined effect of the trace elements on endometriosis risk was assessed using multielement models (Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regression). RESULTS: Based on the single-element models, significant associations of Zn concentrations in blood (high-level vs. low-level group: aOR = 14.17, 95 % CI: 7.31, 27.50) and FF (first tertile vs. second tertile group: aOR = 0.34, 95 % CI: 0.16, 0.71; third tertile vs. second tertile group: aOR = 2.32, 95 % CI: 1.38, 3.91, respectively) and Co concentrations in blood (first tertile vs. second tertile group, aOR = 0.24, 95 % CI: 0.12, 0.48) and FF (third tertile vs. second tertile group: aOR = 3.87, 95 % CI: 2.19, 6.84) with endometriosis risk were found after adjustment for all confounders. In FF, Cu and Mo levels were significantly greater among the cases than among the controls, with a positive association with endometriosis risk (Cu (first tertile vs. second tertile group: aOR = 0.39, 95 % CI: 0.19, 0.81; third tertile vs. second tertile group: aOR = 2.73, 95 % CI: 1.61, 4.66, respectively) and Mo (high-level vs. low-level group: aOR = 14.93, 95 % CI: 7.16, 31.12)). However, similar associations between blood Cu and Mo levels and endometriosis risk were not found. In addition, the levels of these five essential trace element mixtures in blood and in FF were significantly and positively associated with endometriosis risk according to the BKMR analyses; the levels of Zn and Cu in blood and the levels of Mo in FF were significantly related to the risk of endometriosis, and the posterior inclusion probabilities (PIPs) were 1.00, 0.99 and 1.00 for Zn and Cu levels in blood and Mo levels in FF, respectively. Furthermore, Zn and Mo were the highest weighted elements in blood and FF, respectively, according to WQS analyses. CONCLUSION: The risk of endometriosis was associated with elevated levels of several essential trace elements (Zn, Cu and Co). Elevated levels of these elements may be involved in the pathomechanism of endometriosis. However, further studies with larger sample sizes will be necessary to confirm these associations.


Assuntos
Endometriose , Selênio , Oligoelementos , Humanos , Feminino , Adulto , Oligoelementos/análise , Zinco , Cobalto , Endometriose/epidemiologia , Teorema de Bayes , Molibdênio
7.
J Assist Reprod Genet ; 41(5): 1245-1259, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38470552

RESUMO

BACKGROUND: Preimplantation genetic testing for monogenic disorders (PGT-M) is now widely used as an effective strategy to prevent various monogenic or chromosomal diseases. MATERIAL AND METHODS: In this retrospective study, couples with a family history of hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes and/or carrying the pathogenic genes underwent PGT-M to prevent children from inheriting disease-causing gene mutations from their parents and developing known genetic diseases. After PGT-M, unaffected (i.e., normal) embryos after genetic detection were transferred into the uterus of their corresponding mothers. RESULTS: A total of 43 carrier couples with the following hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes underwent PGT-M: Duchenne muscular dystrophy (13 families); methylmalonic acidemia (7 families); spinal muscular atrophy (5 families); infantile neuroaxonal dystrophy and intellectual developmental disorder (3 families each); Cockayne syndrome (2 families); Menkes disease, spinocerebellar ataxia, glycine encephalopathy with epilepsy, Charcot-Marie-Tooth disease, mucopolysaccharidosis, Aicardi-Goutieres syndrome, adrenoleukodystrophy, phenylketonuria, amyotrophic lateral sclerosis, and Dravet syndrome (1 family each). After 53 PGT-M cycles, the final transferable embryo rate was 12.45%, the clinical pregnancy rate was 74.19%, and the live birth rate was 89.47%; a total of 18 unaffected (i.e., healthy) children were born to these families. CONCLUSIONS: This study highlights the importance of PGT-M in preventing children born with hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes.


Assuntos
Testes Genéticos , Doenças Metabólicas , Diagnóstico Pré-Implantação , Humanos , Diagnóstico Pré-Implantação/métodos , Feminino , Gravidez , Testes Genéticos/métodos , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Estudos Retrospectivos , Masculino , Doenças do Sistema Nervoso/genética , Fenótipo , Adulto , Criança , Transferência Embrionária , Mutação/genética
8.
Anal Biochem ; 669: 115122, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948236

RESUMO

Mitochondrial diseases (MDs) are genetic and clinical heterogeneous diseases caused by mitochondrial oxidative phosphorylation defects. It is not only one of the most common genetic diseases, but also the only genetic disease involving two different genomes in humans. As a result of the complicated genetic condition, the pathogenesis of MDs is not entirely elucidated at present, and there is a lack of effective treatment in the clinic. Establishing the ideal animal models is the critical preclinical platform to explore the pathogenesis of MDs and to verify new therapeutic strategies. However, the development of animal modeling of mitochondrial DNA (mtDNA)-related MDs is time-consuming due to the limitations of physiological structure and technology. A small number of animal models of mtDNA mutations have been constructed using cell hybridization and other methods. However, the diversity of mtDNA mutation sites and clinical phenotypes make establishing relevant animal models tricky. The development of gene editing technology has become a new hope for establishing animal models of mtDNA-related mitochondrial diseases.


Assuntos
DNA Mitocondrial , Doenças Mitocondriais , Animais , Humanos , DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Doenças Mitocondriais/terapia , Mitocôndrias/genética , Mutação , Modelos Animais de Doenças
9.
J Assist Reprod Genet ; 40(9): 2185-2196, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37439868

RESUMO

PURPOSE: Preimplantation genetic testing (PGT) has become a reliable tool for preventing the germline transmission of mitochondrial DNA (mtDNA) variants. However, procedures are not standardized across mtDNA variants. In this study, we aim to estimate symptomatic thresholds, risk, and chance of success for PGT for mtDNA pathogenic variant carriers. METHODS: We performed a systematic analysis of heteroplasmy data including 455 individuals from 187 familial pedigrees with the common m.3243A>G, m.8344A>G, or m.8993T>G pathogenic variants. We applied binary logistic regression for estimating symptomatic thresholds of heteroplasmy, simplified Sewell-Wright formula and Kimura equations for predicting the risk of disease transmission, and binomial distribution for predicting minimum oocyte numbers. RESULTS: We estimated the symptomatic thresholds of m.8993T>G and m.8344A>G as 29.86% and 16.15%, respectively. We could not determine a threshold for m.3243A>G. We established models for mothers harboring common and rare mtDNA pathogenic variants to predict the risk of disease transmission and the number of oocytes required to produce an embryo with sufficiently low variant load. In addition, we provide a table allowing the prediction of transmission risk and the minimum required oocytes for PGT patients with different variant levels. CONCLUSION: We have established models that can determine the symptomatic thresholds of common mtDNA pathogenic variants. We also constructed universal models applicable to nearly all mtDNA pathogenic variants which can predict risk and minimum numbers for PGT patients. These models have advanced our understanding of mtDNA disease pathogenesis and will enable more effective prevention of disease transmission using PGT.


Assuntos
DNA Mitocondrial , Doenças Mitocondriais , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/análise , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Mitocôndrias/genética , Células Germinativas , Testes Genéticos
10.
J Assist Reprod Genet ; 40(9): 2197-2209, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37462790

RESUMO

PURPOSE: Although a variety of analytical methods have been developed to detect mitochondrial DNA (mtDNA) heteroplasmy, there are special requirements of mtDNA heteroplasmy quantification for women carrying mtDNA mutations receiving the preimplantation genetic diagnosis (PGD) and prenatal diagnosis (PD) in clinic. These special requirements include various sample types, large sample number, long-term follow-up, and the need for detection of single-cell from biopsied embryos. Therefore, developing an economical, accurate, high-sensitive, and single-cell analytical method for mtDNA heteroplasmy is necessary. METHODS: In this study, we developed the Sanger sequencing combined droplet digital polymerase chain reaction (ddPCR) method for mtDNA quantification and compared the results to next-generation sequencing (NGS). A total of seventeen families with twelve mtDNA mutations were recruited in this study. RESULTS: The results showed that both Sanger sequencing and ddPCR could be used to analyze the mtDNA heteroplasmy in single-cell samples. There was no statistically significant difference in heteroplasmy levels in common samples with high heteroplasmy (≥ 5%), low heteroplasmy (< 5%), and single-cell samples, either between Sanger sequencing and NGS methods, or between ddPCR and NGS methods (P > 0.05). However, Sanger sequencing was unable to detect extremely low heteroplasmy accurately. But even in samples with extremely low heteroplasmy (0.40% and 0.92%), ddPCR was always able to quantify them. Compared to NGS, Sanger sequencing combined ddPCR analytical methods greatly reduced the cost of sequencing. CONCLUSIONS: In conclusion, this study successfully established an economical, accurate, sensitive, single-cell analytical method based on the Sanger sequencing combined ddPCR methods for mtDNA heteroplasmy quantification in a clinical setting.


Assuntos
DNA Mitocondrial , Diagnóstico Pré-Implantação , Feminino , Humanos , Gravidez , DNA Mitocondrial/genética , Mitocôndrias/genética , Mutação/genética , Reação em Cadeia da Polimerase , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
11.
J Assist Reprod Genet ; 40(8): 1983-1993, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37358742

RESUMO

PURPOSE: Polycystic ovary syndrome (PCOS) is one of the leading causes of infertility in women of childbearing age, and many patients with PCOS have obesity and insulin resistance (IR). Although obesity is related to an increased risk of IR, in clinical practice, PCOS patients exhibit different effects on improving insulin sensitivity after weight loss. Therefore, in the present study, we aimed to examine the moderating effect of polymorphisms of mtDNA in the D-loop region on the associations of body mass index (BMI) with the homeostasis model assessment of insulin resistance index (HOMA-IR) and pancreatic ß cell function index (HOMA-ß) among women with PCOS. METHODS: Based on a cross-sectional study, women with PCOS were recruited from the Reproductive Center of the First Affiliated Hospital of Anhui Medical University from 2015 to 2018. A total of 520 women who were diagnosed with PCOS based on the revised 2003 Rotterdam criteria were included in the study. Peripheral blood was collected from these patients, followed by DNA extraction, PCR amplification, and sequencing at baseline. HOMA-IR and HOMA-ß were calculated according to blood glucose-related indices. Moderating effect models were performed with BMI as an independent variable, polymorphisms of mtDNA in the D-loop region as moderators, and ln (HOMA-IR) and ln (HOMA-ß) as dependent variables. To verify the stability of moderating effect, sensitivity analysis was performed with the quantitative insulin sensitivity check index (QUICKI), fasting plasma glucose/fasting insulin (G/I), and fasting insulin as dependent variables. RESULTS: BMI was positively associated with ln (HOMA-IR) and ln (HOMA-ß) (ß = 0.090, p < 0.001; ß = 0.059, p < 0.001, respectively), and the relationship between BMI and ln (HOMA-IR) or ln (HOMA-ß) was moderated by the polymorphisms of mtDNA in the D-loop region. Compared with the respective wild-type, the variant -type of m.16217 T > C enhanced the association between BMI and HOMA-IR, while the variant-type of m.16316 A > G weakened the association. On the other hand, the variant-type of m.16316 A > G and m.16203 A > G weakened the association between BMI and HOMA-ß, respectively. The results of QUICKI and fasting insulin as dependent variables were generally consistent with HOMA-IR, and the results of G/I as dependent variables were generally consistent with HOMA-ß. CONCLUSION: Polymorphisms of mtDNA in the D-loop region moderate the associations of BMI with HOMA-IR and HOMA-ß among women with PCOS.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Feminino , Humanos , Resistência à Insulina/genética , Índice de Massa Corporal , Estudos Transversais , DNA Mitocondrial/genética , Glicemia/genética , Insulina/genética , Obesidade/complicações
12.
Zygote ; 30(4): 471-479, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35220989

RESUMO

To explore whether embryo culture with melatonin (MT) can improve the embryonic development and clinical outcome of patients with repeated cycles after in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) failure, immature oocytes from controlled ovarian superovulation cycles were collected for in vitro maturation (IVM) and ICSI. The obtained embryos were cultured in 0, 10-11, 10-9, 10-7 and 10-5 M MT medium respectively, and 10-9 M was screened out as the optimal concentration. Subsequently, 140 patients who underwent failed IVF/ICSI cycles received 140 cycles of embryo culture in vitro with a medium containing 10-9 M MT, these 140 MT culture cycles were designated as the experimental group (10-9 M group), and the control group was the previous failed cycles of patients (0 M group). The results showed that the fertilization, cleavage, high-quality embryo, blastocyst, and high-quality blastocyst rates of the 10-9 M group were significantly higher than those of the 0 M group (P < 0.01; P < 0.01; P < 0.0001; P < 0.0001; P < 0.0001). To date, in total, 50 vitrified-warmed cycle transfers have been performed in the 10-9 M group and the implantation rate, biochemical pregnancy rate and clinical pregnancy rate were significantly higher than those in the 0 M group (all P < 0.0001). Two healthy infants were delivered successfully and the other 18 women who achieved clinical pregnancy also had good examination indexes. Therefore the application of 10-9 M MT to embryo cultures in vitro improved embryonic development in patients with repeated cycles after failed IVF/ICSI cycles and had good clinical outcomes.Trial registration: ChiCTR2100045552.


Assuntos
Melatonina , Injeções de Esperma Intracitoplásmicas , Feminino , Fertilização in vitro/métodos , Humanos , Masculino , Melatonina/farmacologia , Gravidez , Taxa de Gravidez , Sêmen , Injeções de Esperma Intracitoplásmicas/métodos
13.
Hum Mutat ; 42(2): 177-188, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33259687

RESUMO

The MT-TL1 gene codes for the mitochondrial leucine transfer RNA (tRNALeu(UUR) ) necessary for mitochondrial translation. Pathogenic variants in the MT-TL1 gene result in mitochondriopathy in humans. The m.3250T>C variant in the MT-TL1 gene has been previously associated with exercise intolerance and mitochondrial myopathy, yet disease classification for this variant has not been consistently reported. Molecular studies suggest the m.3250T>C variant does not alter tRNALeu(UUR) structure but may have a modest impact on aminoacylation capacity. However, functional studies are limited. Our study aimed to further define the clinical presentation, inheritance pattern, and molecular pathology of the m.3250T>C variant. Families with the m.3250T>C variant were recruited from the Mitochondrial Disease Clinic at Cincinnati Children's Hospital Medical Center and GeneDx laboratory database. Affected individuals most frequently presented with cardiac findings, exercise intolerance, and muscle weakness. Hypertrophic cardiomyopathy was the most frequent cardiac finding. Many asymptomatic individuals had homoplasmic or near homoplasmic levels of the m.3250T>C variant, suggesting the penetrance is incomplete. Patient-derived fibroblasts demonstrated lowered ATP production and increased levels of reactive oxygen species. Our results demonstrate that the m.3250T>C variant exhibits incomplete penetrance and may be a possible cause of cardiomyopathy by impacting cellular respiration in mitochondria.


Assuntos
Cardiomiopatias , Genoma Mitocondrial , Miopatias Mitocondriais , Cardiomiopatias/genética , Criança , DNA Mitocondrial/genética , Humanos , Miopatias Mitocondriais/genética , Mutação , RNA de Transferência de Leucina/química , RNA de Transferência de Leucina/genética , Fatores de Risco
14.
J Pineal Res ; 70(2): e12707, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33274466

RESUMO

Cryopreservation causes cryoinjury to oocytes and impairs their developmental competence. Melatonin (MLT) can improve the effect of cryopreservation in animal oocytes. However, no such studies on human oocytes have been reported. In this study, collected in vitro-matured human oocytes were randomly divided into the following groups: fresh group, MLT-treated cryopreservation (MC) group, and no-MLT-treated cryopreservation (NC) group. After vitrification and warming, viable oocytes from these three groups were assessed for their mitochondrial function, ultrastructure, permeability of oolemma, early apoptosis, developmental competence, and cryotolerance-related gene expression. First, fluorescence staining results revealed that oocytes from the 10-9  M subgroup showed the lowest intracellular reactive oxygen species and Ca2+ levels and highest mitochondrial membrane potential among the MC subgroups (10-11 , 10-9 , 10-7 , and 10-5  M). In subsequent experiments, oocytes from the 10-9  M-MC group were observed to maintain the normal ultrastructural features and the permeability of the oolemma. Compared with those of the oocytes in the NC group, the early apoptosis rate significantly decreased (P < .01), whereas both the high-quality cleavage embryo and blastocyst rates significantly increased (both P < .05) in the oocytes of the 10-9  M-MC group. Finally, single-cell RNA sequencing and immunofluorescence results revealed that aquaporin (AQP) 1/2/11 gene expression and AQP1 protein expression were upregulated in the MC group. Therefore, these results suggest that MLT can improve the effect of cryopreservation on human oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma.


Assuntos
Melatonina/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Apoptose/efeitos dos fármacos , Criopreservação , Imunofluorescência , Humanos , Estresse Oxidativo/efeitos dos fármacos
15.
J Nanobiotechnology ; 19(1): 136, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985528

RESUMO

SLC25A46 mutations have been found to lead to mitochondrial hyper-fusion and reduced mitochondrial respiratory function, which results in optic atrophy, cerebellar atrophy, and other clinical symptoms of mitochondrial disease. However, it is generally believed that mitochondrial fusion is attributable to increased mitochondrial oxidative phosphorylation (OXPHOS), which is inconsistent with the decreased OXPHOS of highly-fused mitochondria observed in previous studies. In this paper, we have used the live-cell nanoscope to observe and quantify the structure of mitochondrial cristae, and the behavior of mitochondria and lysosomes in patient-derived SLC25A46 mutant fibroblasts. The results show that the cristae have been markedly damaged in the mutant fibroblasts, but there is no corresponding increase in mitophagy. This study suggests that severely damaged mitochondrial cristae might be the predominant cause of reduced OXPHOS in SLC25A46 mutant fibroblasts. This study demonstrates the utility of nanoscope-based imaging for realizing the sub-mitochondrial morphology, mitophagy and mitochondrial dynamics in living cells, which may be particularly valuable for the quick evaluation of pathogenesis of mitochondrial morphological abnormalities.


Assuntos
Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Dinâmica Mitocondrial/fisiologia , Mitofagia/fisiologia , Proliferação de Células , Fibroblastos/metabolismo , Humanos , Lisossomos/metabolismo , Doenças Mitocondriais/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo
16.
J Assist Reprod Genet ; 38(12): 3251-3260, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34802141

RESUMO

OBJECTIVE: To explore inheritance of the m.3697G > A mitochondrial DNA (mtDNA) mutation and the effectiveness of preimplantation genetic diagnosis (PGD) for the carrier. METHODS: The study encompassed a pedigree of m.3697G > A mtDNA mutation, including one asymptomatic patient who pursued for PGD treatment. Twelve cumulus oocyte complexes (COCs) were collected in the first PGD cycle and 11 COCs in the second cycle. The efficiency of cumulus cells, polar bodies, and trophectoderm (TE) in predicting the m.3697G > A heteroplasmy of embryos was analyzed. RESULTS: From 23 COCs, 20 oocytes were fertilized successfully. On day 5 and 6 post-fertilization, 15 blastocysts were biopsied. The m.3697G > A mutation load of TE biopsies ranged from 15.2 to 100%. In the first cycle, a blastocyst with mutation load of 31.7% and chromosomal mosaicism was transferred, but failed to yield a clinical pregnancy. In the second cycle, a euploid blastocyst with mutation load of 53.9% was transferred, which gave rise to a clinical pregnancy. However, the pregnancy was terminated due to fetal cleft lip and palate. The mutation loads of different tissues (47.7 ± 1.8%) from the induced fetus were comparable to that of the biopsied TE and amniotic fluid cell (49.7%). The mutation load of neither cumulus cells (R2 = 0.02, p = 0.58) nor polar bodies (R2 = 0.33, p = 0.13) correlated with TE mutation load which was regarded as a gold standard. CONCLUSIONS: The m.3697G > A mutation showed a random pattern of inheritance. PGD could be used to reduce the risk of inheritance of a high mutation load. Cumulus cells are not a suitable predictor of blastocyst mutation load.


Assuntos
DNA Mitocondrial/genética , Mutação/genética , Adulto , Aneuploidia , Blastocisto/patologia , Fenda Labial/genética , Fenda Labial/patologia , Fissura Palatina/genética , Fissura Palatina/patologia , Transferência Embrionária/métodos , Feminino , Testes Genéticos/métodos , Humanos , Oócitos/patologia , Gravidez , Diagnóstico Pré-Implantação/métodos
17.
Plant J ; 98(5): 884-897, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30771248

RESUMO

Water deficit is a major environmental threat affecting crop yields worldwide. In this study, a drought stress-sensitive mutant drought sensitive 8 (ds8) was identified in rice (Oryza sativa L.). The DS8 gene was cloned using a map-based approach. Further analysis revealed that DS8 encoded a Nck-associated protein 1 (NAP1)-like protein, a component of the SCAR/WAVE complex, which played a vital role in actin filament nucleation activity. The mutant exhibited changes in leaf cuticle development. Functional analysis revealed that the mutation of DS8 increased stomatal density and impaired stomatal closure activity. The distorted actin filaments in the mutant led to a defect in abscisic acid (ABA)-mediated stomatal closure and increased ABA accumulation. All these resulted in excessive water loss in ds8 leaves. Notably, antisense transgenic lines also exhibited increased drought sensitivity, along with impaired stomatal closure and elevated ABA levels. These findings suggest that DS8 affects drought sensitivity by influencing actin filament activity.


Assuntos
Secas , Proteínas de Membrana/metabolismo , Oryza/metabolismo , Epiderme Vegetal/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Ácido Abscísico/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Proteínas de Membrana/genética , Mutação , Oryza/genética , Epiderme Vegetal/genética , Epiderme Vegetal/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Água/metabolismo
18.
Reprod Biomed Online ; 40(4): 501-509, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32201115

RESUMO

RESEARCH QUESTION: Does calcium ionophore treatment of oocytes improve fertilization rate, embryo development and outcomes in specific groups of infertile couples? DESIGN: This retrospective cohort study involved 796 couples undergoing oocyte activation with calcium ionophore (A23187) after intracytoplasmic sperm injection (ICSI) between 2016 and 2018. All metaphase II oocytes were exposed to 5 µmol/l ionophore for 15 min immediately after ICSI, cultured in vitro to the blastocyst stage, and transferred to the uteri of recipients on day 5 or cryopreserved for transfer in the next cycle. The previous cycles of the same patients formed the control group. RESULTS: Among 1261 ICSI cycles and 796 ICSI-artificial oocyte activation (ICSI-AOA) cycles, implantation, positive beta-HCG, clinical pregnancy and live birth rates were significantly (P < 0.05 to P < 0.001) improved for all groups, compared with previous cycles, except live birth rate in women with primary ovarian insufficiency (POI). Compared with previous cycles, rates of blastulation (all P < 0.001) and high-quality blastocysts (P < 0.05 to P < 0.001) were increased significantly for couples with male factor (oligoasthenoteratozoospermia [OAT]), unexplained infertility and couples with both factors in the ICSI-AOA cycles. High-quality blastocyst rate was increased in couples with polycystic ovary syndrome (PCOS) (P = 0.0453). Miscarriage rates were decreased significantly (P < 0.05 to P < 0.001) in couples with OAT, PCOS and unexplained infertility in the treatment cycles. No significant differences were found for fertilization rate, embryo development or live birth rate in patients with POI between both groups. CONCLUSIONS: Artificial oocyte activation was able to 'rescue' the poor reproductive outcomes in certain types of infertile couples with history of failure to achieve pregnancy.


Assuntos
Calcimicina/administração & dosagem , Ionóforos de Cálcio/administração & dosagem , Fertilização in vitro/métodos , Infertilidade/terapia , Oócitos/efeitos dos fármacos , Injeções de Esperma Intracitoplásmicas , Adulto , Coeficiente de Natalidade , Calcimicina/uso terapêutico , Ionóforos de Cálcio/uso terapêutico , Transferência Embrionária , Feminino , Humanos , Infertilidade/tratamento farmacológico , Nascido Vivo , Masculino , Recuperação de Oócitos , Oócitos/citologia , Gravidez , Taxa de Gravidez , Estudos Retrospectivos , Resultado do Tratamento
19.
J Pineal Res ; 68(1): e12621, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31714635

RESUMO

Melatonin (MT) regulates reproductive performance as a potent antioxidant; however, its beneficial effects on oocyte development remain largely unknown, especially in human oocytes. The collected 193 immature oocytes from the controlled ovarian hyperstimulation (COH) cycle underwent in vitro maturation (IVM) in IVM medium contained 10 µmol/L MT (n = 105, M group) and no MT (n = 88, NM group), followed by insemination and embryo culture. The results showed that the high-quality blastocyst formation rate in the M group (28.4%) was significantly higher than that in the NM group (2.0%) (P = .0001), and the aneuploidy rate was low (15.8%). In the subsequent clinical trials, three healthy infants were delivered. Next, single-cell RNA-seq data revealed 1026 differentially expressed genes (DEGs) between the two groups, KEGG enrichment analysis revealed that the majority of DEGs involved in oxidative phosphorylation pathway, which associated with ATP generation, was upregulated in the M group. Finally, confocal fluorescence staining results revealed that the mitochondrial membrane potential in the oocytes significantly increased and intracellular ROS and Ca2+ levels greatly decreased in the M group. Melatonin can promote the development of immature human oocytes retrieved from the COH cycle into healthy offspring by protecting mitochondrial function.


Assuntos
Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Adulto , Células Cultivadas , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/fisiologia , Oócitos/fisiologia , Indução da Ovulação , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
20.
Zygote ; : 1-6, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31933453

RESUMO

To explore whether different polyvinylpyrrolidone (PVP) concentrations affect the results of intracytoplasmic sperm injection (ICSI), a prospective study was conducted for 194 couples undergoing 210 ICSI therapy cycles. These cycles were divided into three groups (10, 7 and 5% groups) using the corresponding concentration of PVP for sperm immobilization. The main outcome measures were analyzed. Results indicated that, with a decrease in PVP concentrations, all of the main outcome measures increased. In particular, the high-quality cleavage embryo rate in the 7% group was significantly lower than in the 5% group (P < 0.01), and the cleavage, high-quality cleavage embryo, and high-quality blastocyst rates in the 5% group were significantly higher than those in the 10% group (all P < 0.001). For high-/intermediate-quality semen, all of the main outcome measures were significantly increased with 5% PVP. For the poor-quality semen, only the high-quality cleavage embryo and high-quality blastocyst rates were significantly higher in the 5% group. Therefore, lowering PVP concentrations greatly promoted the development of embryos in ICSI cycles, with an optimal concentration of 5% for ICSI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA