Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 43(12): 1177-1184, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27612187

RESUMO

Maternal protein restriction during pregnancy and lactation predisposes the adult offspring to sympathetic overactivity and arterial hypertension. Although the underlying mechanisms are poorly understood, dysregulation of the oxidative balance has been proposed as a putative trigger of neural-induced hypertension. The aim of the study was to evaluate the association between the oxidative status at transcriptional and functional levels in the medulla oblongata and maternal protein restriction induced-hypertension. Wistar rat dams were fed a control (normal protein; 17% protein) or a low protein ((Lp); 8% protein) diet during pregnancy and lactation, and male offspring was studied at 90 days of age. Direct measurements of baseline arterial blood pressure (ABP) and heart rate (HR) were recorded in awakened offspring. In addition, quantitative RT-PCR was used to assess the mRNA expression of superoxide dismutase 1 (SOD1) and 2 (SOD2), catalase (CAT), glutathione peroxidase (GPx), Glutamatergic receptors (Grin1, Gria1 and Grm1) and GABA(A)-receptor-associated protein like 1 (Gabarapl1). Malondialdehyde (MDA) levels, CAT and SOD activities were examined in ventral and dorsal medulla. Lp rats exhibited higher ABP. The mRNA expression levels of SOD2, GPx and Gabarapl1 were down regulated in medullary tissue of Lp rats (P<.05, t test). In addition, we observed that higher MDA levels were associated to decreased SOD (approximately 45%) and CAT (approximately 50%) activities in ventral medulla. Taken together, our data suggest that maternal protein restriction induced-hypertension is associated with medullary oxidative dysfunction at transcriptional level and with impaired antioxidant capacity in the ventral medulla.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Hipertensão/metabolismo , Bulbo/metabolismo , Estresse Oxidativo/fisiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transcrição Gênica/fisiologia , Animais , Feminino , Hipertensão/etiologia , Masculino , Exposição Materna/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Distribuição Aleatória , Ratos , Ratos Wistar
2.
Front Physiol ; 7: 448, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27766081

RESUMO

Arterial hypertension (AH) is one of the most prevalent risk factors for cardiovascular diseases (CD) and is the main cause of deaths worldwide. Current research establish that dietary polyphenols may help to lower blood pressure (BP), thus contributing to the reduction of cardiovascular complications. In addition, the health benefits of probiotics on BP have also attracted increased attention, as probiotics administration modulates the microbiota, which, by interacting with ingested polyphenols, controls their bioavalability. The aim of the present mini-review is to summarize and clarify the effects of dietary polyphenols and probiotics administration on BP using combined evidence from clinical and experimental studies, as well as to discuss the current debate in the literature about the usefulness of this nutritional approach to manage BP. Clinical trials and experimental studies have demonstrated that consuming dietary polyphenols or probiotics in adequate amounts may improve BP, ranging from modest to greater effects. However, the mechanisms linking probiotic intake and reduced BP levels need to be further elucidated as a definitive consensus on the link between intake of polyphenols or probiotics and improvement of AH has not been reached yet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA