RESUMO
Synthetic cannabinoids (SCs) are a chemically diverse group of new psychoactive substances (NPSs) that target the endocannabinoid system, triggering a plethora of actions (e.g., elevated mood sensation, relaxation, appetite stimulation) that resemble, but are more intense than, those induced by cannabis. Although some of these effects have been explored for therapeutic applications, anticipated stronger psychoactive effects than cannabis and reduced risk perception have increased the recreational use of SCs, which have dominated the NPS market in the United States and Europe over the past decade. However, rising SC-related intoxications and deaths represent a major public health concern and embody a major challenge for policy makers. Here, we review the pharmacology and toxicology of SCs. A thorough characterization of SCs' pharmacodynamics and toxicodynamics is important to better understand the main mechanisms underlying acute and chronic effects of SCs, interpret the clinical/pathological findings related to SC use, and improve SC risk awareness.
Assuntos
Canabinoides , Humanos , Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , EndocanabinoidesRESUMO
Rise in body temperature is a life-threatening consequence of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) abuse. We evaluated the impact of hyperthermia on the cytotoxicity of combinations of MDMA and three other amphetamines, often co-ingested. For this, Hep G2 cells were exposed to MDMA, d-amphetamine, methamphetamine and 4-methylthioamphetamine, individually or combined, at 40.5 °C. The results were compared with normothermia data (37.0 °C). Mixture additivity expectations were calculated by independent action and concentration addition (CA) models. To delineate the mechanism(s) underlying the elicited effects, a range of stress endpoints was evaluated, including quantification of reactive oxygen/nitrogen species (ROS/RNS), lipid peroxidation, reduced/oxidized glutathione (GSH/GSSG), ATP and mitochondrial membrane potential (Δψm) changes. Our data show that, in hyperthermia, amphetamines acted additively and mixture effects were accurately predicted by CA. At 40.5 °C, even slight increases in the concentrations of each drug/mixture promoted significant rises in cytotoxicity, which quickly shifted from roughly undetectable to maximal mortality. Additionally, the increase of RNS/ROS production, decrease of GSH, ATP depletion and mitochondrial impairment were exacerbated under hyperthermia. Importantly, when equieffective cytotoxic concentrations of the mixture and individual amphetamines were compared for all tested stress endpoints, mixture effects did not deviate from those elicited by individual treatments, suggesting that these amphetamines have a similar mode of action, which is not altered in combination. Concluding, our data indicate that amphetamine mixtures produce deleterious effects, even when individual drugs are combined at negligible concentrations. These effects are strongly exacerbated in hyperthermia, emphasizing the potential increased risks of ecstasy intake, especially when hyperthermia occurs concurrently with polydrug abuse.
Assuntos
Anfetaminas/toxicidade , Hepatócitos/efeitos dos fármacos , Hipertermia Induzida , Estresse Oxidativo/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dextroanfetamina/toxicidade , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Glutationa/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Metanfetamina/toxicidade , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Membranas Mitocondriais/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Medição de RiscoRESUMO
Hepatic injury after 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) intoxications is highly unpredictable and does not seem to correlate with either dosage or frequency of use. The mechanisms involved include the drug metabolic bioactivation and the hyperthermic state of the liver triggered by its thermogenic action and exacerbated by the environmental circumstances of abuse at hot and crowded venues. We became interested in understanding the interaction between ecstasy and its metabolites generated in vivo as users are always exposed to mixtures of parent drug and metabolites. With this purpose, Hep G2 cells were incubated with MDMA and its main human metabolites methylenedioxyamphetamine (MDA), α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA), individually and in mixture (drugs combined in proportion to their individual EC01 ), at normal (37 °C) and hyperthermic (40.5 °C) conditions. After 48 h, viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Extensive concentration-response analysis was performed with single drugs and the parameters of the individual non-linear logit fits were used to predict joint effects using the well-founded models of concentration addition (CA) and independent action (IA). Experimental testing revealed that mixture effects on cell viability conformed to CA, for both temperature settings. Additionally, substantial combination effects were attained even when each substance was present at concentrations that individually produced unnoticeable effects. Hyperthermic incubations dramatically increased the toxicity of the tested drug and metabolites, both individually and combined. These outcomes suggest that MDMA metabolism has hazard implications to liver cells even when metabolites are found in low concentrations, as they contribute additively to the overall toxic effect of MDMA.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Hepatócitos/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , 3,4-Metilenodioxianfetamina/metabolismo , 3,4-Metilenodioxianfetamina/toxicidade , Biotransformação , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Desoxiepinefrina/análogos & derivados , Desoxiepinefrina/metabolismo , Desoxiepinefrina/toxicidade , Relação Dose-Resposta a Droga , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , Dinâmica não Linear , Medição de Risco , Temperatura , Fatores de TempoRESUMO
Nowadays there is a high concern about the combined effects of global warming and emerging environmental contaminants with significant increasing trends of use, such as lithium (Li) and microplastics (MPs), both on wildlife and human health. Therefore, the effects of high light intensity (26,000 lx) or warmer water temperature (25 °C) on the long-term toxicity of Li and mixtures of Li and MPs (Li-MPs mixtures) were investigated using model populations of the freshwater zooplankton species Daphnia magna. Three 21-day bioassays were done in the laboratory at the following water temperatures and light intensities: (i) 20 °C/10830 lx; (ii) 20 °C/26000 lx (high light intensity); (iii) 25 °C/10830 lx (warmer temperature). Based on the 21-day EC50s on reproduction, high light intensity increased the reproductive toxicity of Li and Li-MPs mixtures by ~1.3 fold; warmer temperature increased the toxicity of Li by ~1.2 fold, and the toxicity of Li-MPs mixtures by ~1.4 fold based on the concentration of Li, and by ~2 fold based on the concentrations of MPs. At high light intensity, Li (0.04 mg/L) and Li-MPs mixtures (0.04 Li + 0.09 MPs mg/L) reduced the population fitness by 32 % and 41 %, respectively. Warmer temperature, Li (0.05 mg/L) and Li-MPs mixtures (0.05 Li + 0.09 MPs mg/L) reduced it by 63 % and 71 %, respectively. At warmer temperature or high light intensity, higher concentrations of Li and Li-MPs mixtures lead to population extinction. Based on the population growth rate and using data of bioassays with MPs alone done simultaneously, Li and MPs interactions were antagonistic or synergistic depending on the scenario. High light intensity and chemical stress generally acted synergistically. Warmer temperature and chemical stress always acted synergistically. These findings highlight the threats of long-term exposure to Li and Li-MPs mixtures to freshwater zooplankton and Global Health in a warmer world.
Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Lítio , Zooplâncton , Água , Saúde Global , Poluentes Químicos da Água/toxicidade , DaphniaRESUMO
Environmental contamination with lithium (Li) and microplastics (MP) has been steadily increasing and this trend is expected to continue in the future. Many freshwater ecosystems, which are crucial to reach the United Nations Sustainable Development Goals, are particularly vulnerable to Li and MP contamination, and other pressures. The long-term effects of Li, either alone or combined with MP (Li-MP mixtures), were investigated using the freshwater zooplankton micro-crustacean Daphnia magna as model species. In the laboratory, D. magna females were exposed for 21â¯days to water concentrations of Li (0.02, 0.04, 0.08â¯mg/L) or Li-MP mixtures (0.02 Liâ¯+â¯0.04 MP, 0.04 Liâ¯+â¯0.09 MP mg/L, 0.08 Liâ¯+â¯0.19 MP mg/L). In the range of concentrations tested, Li and Li-MP mixtures caused parental mortality, and decreased the somatic growth (up to 20% and 40% reduction, respectively) and the reproductive success (up to 93% and 90% reduction, respectively). The 21-day EC50s of Li and Li-MP mixtures on D. magna reproduction were 0.039â¯mg/L and 0.039 Liâ¯+â¯0.086 MP mg/L, respectively. Under exposure to the highest concentration of Li (0.08â¯mg/L) and Li-MP mixtures (0.08 Liâ¯+â¯0.19 MP mg/L), the mean of D. magna population growth rate was reduced by 67% and 58%, respectively. Based on the population growth rate and using data from a bioassay testing the same concentrations of MP alone and carried simultaneously, the toxicological interaction between Li and MP was antagonism under exposure to the lowest and the highest concentrations of Li-MP mixtures, and synergism under exposure to the medium concentration of Li-MP mixtures. These findings highlight the need of further investigating the combined effects of contaminants, and the threat of long-term environmental contamination with Li and MP to freshwater zooplankton, biodiversity, ecosystem services and 'One Health'.
Assuntos
Saúde Única , Poluentes Químicos da Água , Animais , Daphnia , Ecossistema , Lítio/toxicidade , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , ZooplânctonRESUMO
Background: Mental health is a public health issue for European young people, with great heterogeneity in resource allocation. Representative population-based studies are needed. The Global Burden of Disease (GBD) Study 2019 provides internationally comparable information on trends in the health status of populations and changes in the leading causes of disease burden over time. Methods: Prevalence, incidence, Years Lived with Disability (YLDs) and Years of Life Lost (YLLs) from mental disorders (MDs), substance use disorders (SUDs) and self-harm were estimated for young people aged 10-24 years in 31 European countries. Rates per 100,000 population, percentage changes in 1990-2019, 95% Uncertainty Intervals (UIs), and correlations with Sociodemographic Index (SDI), were estimated. Findings: In 2019, rates per 100,000 population were 16,983 (95% UI 12,823 - 21,630) for MDs, 3,891 (3,020 - 4,905) for SUDs, and 89·1 (63·8 - 123·1) for self-harm. In terms of disability, anxiety contributed to 647·3 (432-912·3) YLDs, while in terms of premature death, self-harm contributed to 319·6 (248·9-412·8) YLLs, per 100,000 population. Over the 30 years studied, YLDs increased in eating disorders (14·9%;9·4-20·1) and drug use disorders (16·9%;8·9-26·3), and decreased in idiopathic developmental intellectual disability (-29·1%;23·8-38·5). YLLs decreased in self-harm (-27·9%;38·3-18·7). Variations were found by sex, age-group and country. The burden of SUDs and self-harm was higher in countries with lower SDI, MDs were associated with SUDs. Interpretation: Mental health conditions represent an important burden among young people living in Europe. National policies should strengthen mental health, with a specific focus on young people. Funding: The Bill and Melinda Gates Foundation.
RESUMO
BACKGROUND: Mescaline (3,4,5-trimethoxyphenethylamine), mainly found in the Peyote cactus (Lophophora williamsii), is one of the oldest known hallucinogenic agents that influence human and animal behavior, but its psychoactive mechanisms remain poorly understood. OBJECTIVES: This article aims to fully review pharmacokinetics and pharmacodynamics of mescaline, focusing on the in vivo and in vitro metabolic profile of the drug and its implications for the variability of response. METHODS: Mescaline pharmacokinetic and pharmacodynamic aspects were searched in books and in PubMed (U.S. National Library of Medicine) without a limiting period. Biological effects of other compounds found in peyote were also reviewed. RESULTS: Although its illicit administration is less common, in comparison with cocaine and Cannabis, it has been extensively described in adolescents and young adults, and licit consumption often occurs in religious and therapeutic rituals practiced by the Native American Church. Its pharmacodynamic mechanisms of action are primarily attributed to the interaction with the serotonergic 5-HT2A-C receptors, and therefore clinical effects are similar to those elicited by other psychoactive substances, such as lysergic acid diethylamide (LSD) and psilocybin, which include euphoria, hallucinations, depersonalization and psychoses. Moreover, as a phenethylamine derivative, signs and symptoms are consistent with a sympathomimetic effect. Mescaline is mainly metabolized into trimethoxyphenylacetic acid by oxidative deamination but several minor metabolites with possible clinical and forensic repercussions have also been reported. CONCLUSION: Most reports concerning mescaline were presented in a complete absence of exposure confirmation, since toxicological analysis is not widely available. Addiction and dependence are practically absent and it is clear that most intoxications appear to be mild and are unlikely to produce lifethreatening symptoms, which favors the contemporary interest in the therapeutic potential of the drugs of the class.
Assuntos
Alucinógenos/farmacocinética , Mescalina/farmacocinética , Animais , Cactaceae/química , Medicina Legal , Alucinógenos/metabolismo , Alucinógenos/farmacologia , Alucinógenos/toxicidade , Humanos , Absorção Intestinal , Mescalina/metabolismo , Mescalina/farmacologia , Mescalina/toxicidade , Distribuição TecidualRESUMO
In the present study we investigated the in vitro hepatotoxicity of a set of rhodamine-labelled 3-hydroxy-4-pyridinones (3,4-HPO) that had previously demonstrated significant inhibitory effect in the intramacrophagic growth of Mycobacterium avium. Our aim was to establish a correspondence between the molecular structure and the in vitro toxicological activity of these compounds. The impact of a set of bidentate (MRB2, MRB7, MRB8, and MRB9) and hexadentate (MRH7, MRH8, and MRH10) chelators on cellular metabolic competence and membrane integrity was investigated in HepG2 cells. Our findings indicate that: a) hexadentate chelators are more cytotoxic than parent bidentate ligands; b) disruption of cell membrane and metabolic competence only occurred after 5 days, at the highest concentrations tested; c) strict correlation between bacteriostatic activity and in vitro toxicity was observed, which seems to be directly dependent on the size of the molecule and on the hydrophilic/lipophilic balance; d) among the set of bidentate ligands, carboxyrhodamine derivatives (amide linker) presented lower detrimental effects, when compared with rhodamine B isothiocyanate chelators (thiourea linker); e) contrarily, for the hexadentate series, rhodamine B isothiocyanate derivatives are less cytotoxic to HepG2 cells than carboxyrhodamine molecules; and f) for all compounds tested, when the substituents of the nitrogen atom were switched from ethyl to methyl, an increment of toxicity was observed. Overall, all chelators seem to display suitable in vitro toxicological potential to combat fast grow bacteria. According to their in vitro pharmacological: toxicological potential ratio, MRH7 and MRH8 may be considered as the most suitable compounds to undergo further pre-clinical development studies.
RESUMO
The protein fraction of Brewers' spent grain (BSG) was used as substrate to obtain hydrolysates with antioxidant activity. Three enzymatic approaches were applied: brewer's spent yeast (BSY) proteases, Neutrase® and Alcalase®, at the same proteolytic activity (1U/mL), using an enzyme/substrate ratio of 10:100 (v/v), at 50°C, 4h. Total Phenolic Content (TPC) and Ferric Ion Reducing Antioxidant Power (FRAP) of hydrolysates and fractions <10kDa and <3kDa were assayed. Additionally, the protective ability of <10kDa fractions against oxidative stress on Caco-2 and HepG2 cells was investigated. Alcalase® hydrolysate presented significantly (p<0.05) higher TPC and FRAP (0.083mgGAE/mgdw; 0.101mgTE/mgdw, respectively) than Neutrase® and BSY hydrolysates. The three BSG protein hydrolysates (fraction <10kDa) exerted protective effect against free-radical induced cytotoxicity in Caco-2 and HepG2 cell lines, but the strongest effect was observed for BSY hydrolysates, therefore, it presents greater potential as functional ingredient.
Assuntos
Grão Comestível/química , Estresse Oxidativo/efeitos dos fármacos , Hidrolisados de Proteína/química , HumanosRESUMO
Abuse of synthetic drugs is widespread among young people worldwide. In this context, piperazine derived drugs recently appeared in the recreational drug market. Clinical studies and case-reports describe sympathomimetic effects including hypertension, tachycardia, and increased heart rate. Our aim was to investigate the cytotoxicity of N-benzylpiperazine (BZP), 1-(3-trifluoromethylphenyl) piperazine (TFMPP), 1-(4-methoxyphenyl) piperazine (MeOPP), and 1-(3,4-methylenedioxybenzyl) piperazine (MDBP) in the H9c2 rat cardiac cell line. Complete cytotoxicity curves were obtained at a 0-20 mM concentration range after 24 h incubations with each drug. The EC50 values (µM) were 343.9, 59.6, 570.1, and 702.5 for BZP, TFMPP, MeOPP, and MDBP, respectively. There was no change in oxidative stress markers. However, a decrease in total GSH content was noted for MDBP, probably due to metabolic conjugation reactions. All drugs caused significant decreases in intracellular ATP, accompanied by increased intracellular calcium levels and a decrease in mitochondrial membrane potential that seems to involve the mitochondrial permeability transition pore. The cell death mode revealed early apoptotic cells and high number of cells undergoing secondary necrosis. Among the tested drugs, TFMPP seems to be the most potent cytotoxic compound. Overall, piperazine designer drugs are potentially cardiotoxic and support concerns on risks associated with the intake of these drugs.