Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 20(4): 6194-210, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25859778

RESUMO

Copaifera spp. are Amazonian species widely studied and whose oleoresins are used by local people for various medicinal purposes. However, a detailed study of the activity of the main phytochemical components of these oleoresins remains to be done. Here, we studied the cytotoxicity and in vitro anti-inflammatory effects of six diterpene acids: copalic, 3-hydroxy-copalic, 3-acetoxy-copalic, hardwickiic, kolavic-15-metyl ester, and kaurenoic, isolated from the oleoresins of Copaifera spp. The diterpenes did not show cytotoxicity in normal cell lines, nor did they show significant changes in viability of tumoral line cells. The 3-hydroxy-copalic was able to inhibit the enzyme tyrosinase (64% ± 1.5%) at 250 µM. The kolavic-15-metyl ester at 200 µM showed high inhibitory effect on lipoxygenase (89.5% ± 1.2%). Among the diterpenes tested, only kaurenoic and copalic acids showed significant hemolytic activities with 61.7% and 38.4% at 100 µM, respectively. In addition, it was observed that only the copalic acid (98.5% ± 1.3%) and hardwickiic acid (92.7% ± 4.9%) at 100 mM inhibited nitric oxide production in macrophages activated by lipopolysaccharide. In this assay, the diterpenes did not inhibit tumor necrosis factor-α production. The acids inhibited the production of IL-6, 3-acetoxy-copalic (23.8% ± 8.2%), kaurenoic (11.2% ± 5.7%), kolavic-15-methyl ester (17.3% ± 4.2%), and copalic (4.2% ± 1.8%), respectively, at 25 µM. The kaurenoic, 3-acetoxy-copalic and copalic acids increased IL-10 production. This study may provide a basis for future studies on the therapeutic role of diterpenic acids in treating acute injuries such as inflammation or skin disorders.


Assuntos
Diterpenos/administração & dosagem , Inflamação/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Diterpenos/química , Fabaceae/química , Hemólise , Humanos , Inflamação/patologia , Lipopolissacarídeos/química , Macrófagos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Ratos
2.
Neural Regen Res ; 18(1): 38-46, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35799506

RESUMO

Obesity is associated with several diseases, including mental health. Adipose tissue is distributed around the internal organs, acting in the regulation of metabolism by storing and releasing fatty acids and adipokine in the tissues. Excessive nutritional intake results in hypertrophy and proliferation of adipocytes, leading to local hypoxia in adipose tissue and changes in these adipokine releases. This leads to the recruitment of immune cells to adipose tissue and the release of pro-inflammatory cytokines. The presence of high levels of free fatty acids and inflammatory molecules interfere with intracellular insulin signaling, which can generate a neuroinflammatory process. In this review, we provide an up-to-date discussion of how excessive obesity can lead to possible cognitive dysfunction. We also address the idea that obesity-associated systemic inflammation leads to neuroinflammation in the brain, particularly the hypothalamus and hippocampus, and that this is partially responsible for these negative cognitive outcomes. In addition, we discuss some clinical models and animal studies for obesity and clarify the mechanism of action of anti-obesity drugs in the central nervous system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA