Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Rep ; 37(2): 293-306, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29080908

RESUMO

KEY MESSAGE: BbrizGID1 is expressed in the nucellus of apomictic Brachiaria brizantha, previous to aposporous initial differentiation. AtGID1a overexpression triggers differentiation of Arabidopsis thaliana MMC-like cells, suggesting its involvement in ovule development. GIBBERELLIN-INSENSITIVE DWARF1 (GID1) is a gibberellin receptor previously identified in plants and associated with reproductive development, including ovule formation. In this work, we characterized the Brachiaria brizantha GID1 gene (BbrizGID1). BbrizGID1 showed up to 92% similarity to GID1-like gibberellin receptors of other plants of the Poaceae family and around 58% to GID1-like gibberellin receptors of Arabidopsis thaliana. BbrizGID1 was more expressed in ovaries at megasporogenesis than in ovaries at megagametogenesis of both sexual and apomictic plants. In ovules, BbrizGID1 transcripts were detected in the megaspore mother cell (MMC) of sexual and apomictic B. brizantha. Only in the apomictic plants, expression was also observed in the surrounding nucellar cells, a region in which aposporous initial cells differentiate to form the aposporic embryo sac. AtGID1a ectopic expression in Arabidopsis determines the formation of MMC-like cells in the nucellus, close to the MMC, that did not own MMC identity. Our results suggest that GID1 might be involved in the proper differentiation of a single MMC during ovule development and provide valuable information on the role of GID1 in sexual and apomictic reproduction.


Assuntos
Brachiaria/genética , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Óvulo Vegetal/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Apomixia/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brachiaria/crescimento & desenvolvimento , Brachiaria/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Homologia de Sequência de Aminoácidos
2.
Protoplasma ; 261(1): 89-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37482557

RESUMO

For the purpose of understanding the molecular processes triggered during callus formation in macaw palm, the expression of seven genes potentially involved in this process, identified in previous studies and from the literature, was investigated by RT-qPCR. In addition, in situ hybridization of the SERK gene was performed. Leaf tissues from adult plants from two macaw palm accession were inoculated in a medium combined with Picloram at a concentration of 450 µM to induce callus. The expression analysis was performed from leaf samples from two accessions of different origins (Municipalities of Tiros, MG, and Buriti Vermelho, DF, Brazil), which are characterized as non-responsive (NR) and responsive (R), respectively. The material was collected before callus induction (0 DAI, initial day) and 120 days after callus induction (120 DAI). Genes related to development (SERK, OASA, EF1, ANN1) and stress (LEA, CAT2, and MDAR5) were evaluated. The results obtained showed that all the genes involved with the development had their expressions downregulated at 0 DAI when the accession R was compared with the accession NR. On the other hand, it was possible to observe that these genes were upregulated at 120 DAI. The LEA stress gene showed a tendency to increase expression in the NR accession, while the R accession showed decreased expression and the CAT2 and MDAR5 genes showed upregulation in both accessions. In situ hybridization showed SERK transcripts in the vascular bundles, indicating the expression of SERK in this region, in addition to its expression in calluses. The results obtained in this study support our hypothesis that the regulation of genes involved in the control of oxidative stress and development is crucial for the formation of calluses in macaw palm.


Assuntos
Arecaceae , Genes de Plantas , Arecaceae/genética , Hibridização In Situ , Brasil
3.
Plant Cell Rep ; 31(2): 403-16, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22068439

RESUMO

In apomixis, asexual mode of plant reproduction through seeds, an unreduced megagametophyte is formed due to circumvented or altered meiosis. The embryo develops autonomously from the unreduced egg cell, independently of fertilization. Brachiaria is a genus of tropical forage grasses that reproduces sexually or by apomixis. A limited number of studies have reported the sequencing of apomixis-related genes and a few Brachiaria sequences have been deposited at genebank databases. This work shows sequencing and expression analyses of expressed sequence-tags (ESTs) of Brachiaria genus and points to transcripts from ovaries with preferential expression at megasporogenesis in apomictic plants. From the 11 differentially expressed sequences from immature ovaries of sexual and apomictic Brachiaria brizantha obtained from macroarray analysis, 9 were preferentially detected in ovaries of apomicts, as confirmed by RT-qPCR. A putative involvement in early steps of Panicum-type embryo sac differentiation of four sequences from B. brizantha ovaries: BbrizHelic, BbrizRan, BbrizSec13 and BbrizSti1 is suggested. Two of these, BbrizSti1 and BbrizHelic, with similarity to a gene coding to stress induced protein and a helicase, respectively, are preferentially expressed in the early stages of apomictic ovaries development, especially in the nucellus, in a stage previous to the differentiation of aposporous initials, as verified by in situ hybridization.


Assuntos
Apomixia/genética , Brachiaria/embriologia , Etiquetas de Sequências Expressas , Flores/genética , Genes de Plantas/genética , Morfogênese/genética , Sementes/embriologia , Brachiaria/citologia , Brachiaria/genética , Flores/citologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Hibridização In Situ , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética
4.
Methods Mol Biol ; 2527: 247-263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951196

RESUMO

In situ hybridization with mRNA probes enables the detection and localization of gene expression in plant somatic embryogenesis samples. BbrizSERK is a gene that is expressed in embryogenic cells and tissues of Brachiaria. Here we describe methods used for in situ hybridization to localize BbrizSERK transcripts during somatic embryogenesis of Brachiaria brizantha according to the plant material and observations intended, using paraffin or butyl methyl methacrylate resin-embedded samples, as well as a method for whole-mount preparation applicable for the analysis of other genes involved in embryogenic processes, along with other in vitro processes.


Assuntos
Brachiaria , Brachiaria/genética , Desenvolvimento Embrionário , Hibridização In Situ
5.
Front Plant Sci ; 9: 1547, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405677

RESUMO

Apomixis is a clonal mode of reproduction via seeds, which results from the failure of meiosis and fertilization in the sexual female reproductive pathway. In previous transcriptomic surveys, we identified a mitogen-activated protein kinase kinase kinase (N46) displaying differential representation in florets of sexual and apomictic Paspalum notatum genotypes. Here, we retrieved and characterized the N46 full cDNA sequence from sexual and apomictic floral transcriptomes. Phylogenetic analyses showed that N46 was a member of the YODA family, which was re-named QUI-GON JINN (QGJ). Differential expression in florets of sexual and apomictic plants was confirmed by qPCR. In situ hybridization experiments revealed expression in the nucellus of aposporous plants' ovules, which was absent in sexual plants. RNAi inhibition of QGJ expression in two apomictic genotypes resulted in significantly reduced rates of aposporous embryo sac formation, with respect to the level detected in wild type aposporous plants and transformation controls. The QGJ locus segregated independently of apospory. However, a probe derived from a related long non-coding RNA sequence (PN_LNC_QGJ) revealed RFLP bands cosegregating with the Paspalum apospory-controlling region (ACR). PN_LNC_QGJ is expressed in florets of apomictic plants only. Our results indicate that the activity of QGJ in the nucellus of apomictic plants is necessary to form non-reduced embryo sacs and that a long non-coding sequence with regulatory potential is similar to sequences located within the ACR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA