Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Proteome Res ; 18(2): 642-651, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30575379

RESUMO

Protein interactions enable much more complex behavior than the sum of the individual protein parts would suggest and represents a level of biological complexity requiring full understanding when unravelling cellular processes. Cross-linking mass spectrometry has emerged as an attractive approach to study these interactions, and recent advances in mass spectrometry and data analysis software have enabled the identification of thousands of cross-links from a single experiment. The resulting data complexity is, however, difficult to understand and requires interactive software tools. Even though solutions are available, these represent an agglomerate of possibilities, and each features its own input format, often forcing manual conversion. Here we present Cross-ID, a visualization platform that links directly into the output of XlinkX for Proteome Discoverer but also plays well with other platforms by supporting a user-controllable text-file importer. The platform includes features like grouping, spectral viewer, gene ontology (GO) enrichment, post-translational modification (PTM) visualization, domains and secondary structure mapping, data set comparison, previsualization overlap check, and more. Validation of detected cross-links is available for proteins and complexes with known structure or for protein complexes through the DisVis online platform ( http://milou.science.uu.nl/cgi/services/DISVIS/disvis/ ). Graphs are exportable in PDF format, and data sets can be exported in tab-separated text files for evaluation through other software.


Assuntos
Análise de Dados , Espectrometria de Massas/métodos , Mapas de Interação de Proteínas , Proteômica/métodos , Software , Interface Usuário-Computador
2.
Front Nutr ; 10: 1305086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288064

RESUMO

Introduction: Upon vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) humans will start to produce antibodies targeting virus specific antigens that will end up in circulation. In lactating women such antibodies will also end up in breastmilk, primarily in the form of secretory immunoglobulin A1 (SIgA1), the most abundant immunoglobulin (Ig) in human milk. Here we set out to investigate the SIgA1 clonal repertoire response to repeated SARS-CoV-2 vaccination, using a LC-MS fragment antigen-binding (Fab) clonal profiling approach. Methods: We analyzed the breastmilk of six donors from a larger cohort of 109 lactating mothers who received one of three commonly used SARS-CoV-2 vaccines. We quantitatively monitored the SIgA1 Fab clonal profile over 16 timepoints, from just prior to the first vaccination until 15 days after the second vaccination. Results: In all donors, we detected a population of 89-191 vaccine induced clones. These populations were unique to each donor and heterogeneous with respect to individual clonal concentrations, total clonal titer, and population size. The vaccine induced clones were dominated by persistent clones (68%) which came up after the first vaccination and were retained or reoccurred after the second vaccination. However, we also observe transient SIgA1 clones (16%) which dissipated before the second vaccination, and vaccine induced clones which uniquely emerged only after the second vaccination (16%). These distinct populations were observed in all analyzed donors, regardless of the administered vaccine. Discussion: Our findings suggest that while individual donors have highly unique human milk SIgA1 clonal profiles and a highly personalized SIgA1 response to SARS-CoV-2 vaccination, there are also commonalities in vaccine induced responses.

3.
MAbs ; 14(1): 2079449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35699511

RESUMO

A key step in therapeutic and endogenous humoral antibody characterization is identifying the amino acid sequence. So far, this task has been mainly tackled through sequencing of B-cell receptor (BCR) repertoires at the nucleotide level. Mass spectrometry (MS) has emerged as an alternative tool for obtaining sequence information directly at the - most relevant - protein level. Although several MS methods are now well established, analysis of recombinant and endogenous antibodies comes with a specific set of challenges, requiring approaches beyond the conventional proteomics workflows. Here, we review the challenges in MS-based sequencing of both recombinant as well as endogenous humoral antibodies and outline state-of-the-art methods attempting to overcome these obstacles. We highlight recent examples and discuss remaining challenges. We foresee a great future for these approaches making de novo antibody sequencing and discovery by MS-based techniques feasible, even for complex clinical samples from endogenous sources such as serum and other liquid biopsies.


Assuntos
Peptídeos , Análise de Sequência de Proteína , Sequência de Aminoácidos , Anticorpos/genética , Peptídeos/química , Proteômica/métodos , Análise de Sequência de Proteína/métodos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA